Skip to main content
Log in

Waterside corrosion in zirconium alloys

  • Advanced Fuel Performance: Modeling and Simulation
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The influence of the alloy microstructure and microchemistry on uniform waterside corrosion of zirconium alloys is reviewed, with special attention to the various stages of corrosion, such as pre-transition, transition, and breakaway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lemaignan and A. T. Motta, Materials Science and Technology, A Comprehensive Treatment, vol. 10B, ed. B.R.T. Frost (New York: Wiley-VCH, 1994), pp. 1–51.

    Google Scholar 

  2. R. Yang, O. Ozer, and H. Rosenbaum, “Current Challenges and Expectations of High Performance Fuel for the Millennium” (Paper presented at the Light Water Reactor Fuel Performance Meeting, Park City, Utah, ANS, 2000).

  3. M. Blat, L. Legras, D. Noel, and H. Amanrich, Twelfth Int.l Symp. on Zr in the Nuclear Industry, STP 1354 (West Conshohocken, PA: ASTM, 2000), pp. 563–591.

    Book  Google Scholar 

  4. P. Bossis, D. Pecheur, K. Hanifi, J. Thomazet, and M. Blat, J. ASTM Int., 3 (2006) paper #JAI12404.

  5. G. Zhou, G. Wikmark, L. Hallstadius, J. Wright, M. Dahlback, L.P. Brandes, S. Holcombe, U. Wetterholm, A. Lindquist, S. Valizadeh, Y. Long, and P. Blair, Proceedings of Top Fuel 2009 (Paris: American Nuclear Sociey, 2009), paper 2020.

    Google Scholar 

  6. B. Cox, J. Nuclear Materials, 336 (2005), pp. 331–368.

    Article  CAS  Google Scholar 

  7. “Corrosion of Zirconium Alloys in Nuclear Power Plants,” Doc. No IAEA-TECDOC-684 (Vienna, Austria: International Atomic Energy Agency, 1993).

  8. “Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants,” Doc. No IAEA-TECDOC-996 (Vienna, Austria: International Atomic Energy Agency, 1998).

  9. E. Hillner, Proc. 3rd Int. Symp. on Zr in the Nuclear Industry, ASTM STP 633 (1977), pp. 211–235.

    Google Scholar 

  10. S. Kass, Proc. Symp. on Corrosion of Zirconium Alloys, ASTM, STP 368 (La Grange Park, IL: American Nuclear Society, 1964), pp. 3–27.

    Google Scholar 

  11. G.P. Sabol, G.R. Kilp, M.G. Balfour, and E. Roberts, Eighth Int. Symp. on Zirconium in the Nuclear Industry, ASTM STP 1023 (West Conshohocken, PA:, ASTM, 1989), pp. 227–244.

    Book  Google Scholar 

  12. G.L. Garner and J.P. Mardon, Nuclear Engineering Int., 47 (2002), pp. 36–37.

    Google Scholar 

  13. J.P. Mardon, D. Charquet, and J. Senevat, 12th Int. Symp. on Zr in the Nuclear Industry, ASTM STP 1354 (West Conshohocken, PA:, ASTM, 2000), pp. 505–524.

    Google Scholar 

  14. F. Garzarolli and H. Stehle, IAEA Symp. on Improvements in Water Reactor Fuel Technology and Utilization, SM 288/24 (Vienna, Austria,; IAEA, 1986), pp. 387–407.

    Google Scholar 

  15. N. Ramasubramanian, P. Billot, and S. Yagnik, “Hydrogen Evolution and Pickup during the Corrosion of Zirconium Alloys: A Critical Evaluation of the Solid State and Porous Oxide Electrochemistry,” ASTM Special Technical Publication 1423 (West Conshohocken, PA: ASTM, 2002), pp. 222–242.

    Google Scholar 

  16. D.L. Douglass, The Metallurgy of Zirconium (Vienna, Austria: International Atomic Energy Agency Supplement, 1971).

    Google Scholar 

  17. J.B. Bai, C. Prioul, and D. Francois, Metall. Mater. Trans. A, 25A (1994), pp. 1185–1197.

    Article  CAS  Google Scholar 

  18. C.E. Ells, J. Nuclear Mater., 28 (1968), pp. 129–151.

    Article  CAS  Google Scholar 

  19. R.C. Garvie, J. Phys. Chem., 69 (1965), pp. 1238–1243.

    Article  CAS  Google Scholar 

  20. R.C. Garvie, J. Phys. Chem., 82 (1978), pp. 218–224.

    Article  CAS  Google Scholar 

  21. J. Godlewski, 10th Int. Symp. on Zr in the Nuclear Industry, ASTM STP 1245 (West Conshohocken, PA: ASTM, 1994), pp. 663–686.

    Book  Google Scholar 

  22. A. Yilmazbayhan, “Microstructural Basis of Uniform Corrosion in Zr Alloys” (Ph.D Thesis in Nuclear Engineering, Penn State University, 2004).

  23. A. Yilmazbayhan, A.T. Motta, R.J. Comstock, G.P. Sabol, B. Lai, and Z. Cai, J. Nuclear Materials, 324 (2004), pp. 6–22.

    Article  CAS  Google Scholar 

  24. A.T. Motta, M.J. Gomes-da-Silva, A. Yilmazbayhan, R.J. Comstock, Z. Cai, and B. Lai, J. ASTM International, 5 (2008), paper ID# JAI10125.

  25. A.T. Motta, A. Yilmazbayhan, R.J. Comstock, J. Partezana, G.P. Sabol, Z. Cai, and B. Lai, J. ASTM International, 2 (2005), Paper # JAI 12375.

  26. A. Yilmazbayhan, A.T. Motta, H.G. Kim, Y.H. Jeong, J.Y. Park, and R. Comstock, Environmental Degradation of Materials in Nuclear Power Systems XII, ed. L. Nelson, P.J. King and T.R. Allen (Warrendale, PA: TMS, 2007), pp. 201–210.

    Google Scholar 

  27. D. Pecheur, J. Godlewski, P. Billot, and J. Thomazet, 11th Int. Symp. on Zr in the Nuclear Industry, ASTM STP 1295 (West Conshohocken, PA: ASTM, 1995), pp. 94–113.

    Google Scholar 

  28. P. Barberis and A. Frichet, J. Nuclear Materials, 273 (1999), pp. 182–191.

    Article  CAS  Google Scholar 

  29. B. Cox, J. Corrosion Science and Eng., 6 (2003), paper 14.

  30. B. Cox and J.P. Pemsler, J. Nuclear Mater., 28 (1968), pp. 73–78.

    Article  CAS  Google Scholar 

  31. M. Tupin, M. Pijolat, F. Valdivieso, M. Soustelle, A. Frichet, and P. Barberis, J. Nuclear Mater., 317 (2003), pp. 130–144.

    Article  CAS  Google Scholar 

  32. A.T.J. Fromhold, Theory of Metal Oxidation, vol. 9 (New York: North-Holland, 1976).

    Google Scholar 

  33. G.P. Sabol and S.B. Dalgaard, J. Electrochemical Soc., 122 (1975), p. 316.

    Article  CAS  Google Scholar 

  34. A. Yilmazbayhan, E. Breval, A. Motta, and R. Comstock, J. Nuclear Mater., 349 (2006), pp. 265–281.

    Article  CAS  Google Scholar 

  35. P. Bossis, G. Lelievre, P. Barberis, X. Iltis, and F. Lefebvre, Twelfth Int. Symp. on Zirconium in the Nuclear Industry, ASTM STP 1354 (West Conshohocken, PA: ASTM, 2000), p. 918.

    Book  Google Scholar 

  36. P. Bossis, F. Lefebvre, P. Barberis, and A. Galerie, Materials Science Forum, 369–372 (2001), pp. 255–262.

    Article  Google Scholar 

  37. B. Cox, J. Nuclear Mater., 29 (1969), p. 50.

    Article  CAS  Google Scholar 

  38. D.H. Bradhurst and P.M. Heuer, J. Nuclear Mater., 37 (1970), p. 35.

    Article  CAS  Google Scholar 

  39. B. Cox, J. Nuclear Mater., 27 (1968), pp. 1–11.

    Article  Google Scholar 

  40. N. Ni, S. Lozano-Perez, M.L. Jenkins, C. English, G.D.W. Smith, J.M. Sykes, and C.R.M. Grovenor, Scripta Materialia, 62 (2010), pp. 564–567.

    Article  CAS  Google Scholar 

  41. B. Cox, J. Nuclear Mater., 148 (1987), pp. 332–343.

    Article  CAS  Google Scholar 

  42. B. Cox and Y. Yamaguchi, J. Nuclear Mater., 210 (1994), pp. 303–317.

    Article  CAS  Google Scholar 

  43. J.L. Bechade, R. Brenner, P. Goudeau, and M. Gailhanou, Revue de Metallurgie, Cahiers D’Informations Techniques, 100 (2003), pp. 1151–1156.

    CAS  Google Scholar 

  44. J.-L. Béchade, R. Brenner, P. Goudeau, and M. Gailhanou, Mater. Sci. Forum, 404–407 (2002), pp. 803–808.

    Article  Google Scholar 

  45. N. Petigny, P. Barberis, C. Lemaignan, C. Valot, and M. Lallemant, J. Nuclear Mater., 280 (2000), pp. 318–330.

    Article  CAS  Google Scholar 

  46. J. Godlewski, P. Bouvier, G. Lucazeau, and L. Fayette, “Stress Distribution Measured by Raman Spectroscopy in Zirconia Films Formed by Oxidation of Zrbased Alloys,” Twelfth Int. Symp. Zr Nuclear Ind., ASTM STP 1354 (West Conshohocken, PA: ASTM, 2000), pp. 877–900.

    Chapter  Google Scholar 

  47. P. Goudeau, D. Faurie, B. Girault, P.O. Renault, E. Le Bourhis, P. Villain, F. Badawi, O. Castelnau, R. Brenner, J.L. Bechade, G. Geandier, and N. Tamura, Mater. Sci. Forum, 524–525 (2006), pp. 735–740.

    Article  Google Scholar 

  48. J. Godlewski, J.P. Gros, M. Lambertin, J.F. Wadier, and H. Weidinger, 9th Int. Symp. on Zr in the Nuclear Industry, ASTM STP 1132 (West Conshohocken, PA: ASTM, 1991), pp. 416–436.

    Book  Google Scholar 

  49. H. Li, H.M. Glavicic, and J.A. Spuznar, Mater. Sci. and Eng., A366 (2004), pp. 164–174.

    Article  CAS  Google Scholar 

  50. A. Motta, A. Yilmazbayhan, M. Gomes da Silva, R.J. Comstock, G. Was, J. Busby, E. Gartner, Q. Peng, Y.H. Jeong, and J.Y. Park, J. Nuclear Mater., 371 (2007), pp. 61–75.

    Article  CAS  Google Scholar 

  51. A.T. Motta and Y.H. Jeong, “Advanced Corrosion Resistant Zr Alloys for use in High Burnup and generation IV Systems,” I-NERI Research Project # 2003-020-K (ROK-USA, 2003–2006), doi 10.2172/895014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur T. Motta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motta, A.T. Waterside corrosion in zirconium alloys. JOM 63, 59–63 (2011). https://doi.org/10.1007/s11837-011-0140-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0140-0

Keywords

Navigation