Skip to main content
Log in

Representation and computational structure-property relations of random media

  • Large Datasets in Materials Science, Part I
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recent trends towards integrated computational materials engineering (ICME) demand increasing reliance on modeling and simulation to estimate microstructure-property relations of materials with random microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.M. Pollock and J. Allison, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (Washington, D.C.: The National Academies Press, 2008).

    Google Scholar 

  2. D. Apelian, National Research Council Report: Accelerating Technology Transition: Bridging the Valley of Death for Materials and Processes in Defense Systems (Washington, D.C.: The National Academies Press, 2004).

    Google Scholar 

  3. T. Oden, T. Belytschko, J. Fishgokhale Dmicrostrucu, T.J.R. Hughes, C. Johnson, D. Keyes, A. Laub, L. Petzold, D. Srolovitz, and S. Yip, Simulation-Based Engineering Science: Revolutionizing Engineering Science through Simulation, Report of NSF Blue Ribbon Panel on Simulation-Based Engineering Science (May 2006) (accessed on 12/21/10), www.nsf.gov/pubs/reports/sbes_final_report.pdf.

  4. D.L. McDowell, JOM, 59(9) (2007), pp. 21–25.

    Article  Google Scholar 

  5. D.L. McDowell and G.B. Olson, Scientific Modeling and Simulation (CMNS), 15(1) (2008), pp. 207–240.

    Article  CAS  Google Scholar 

  6. D.L. McDowell, J.H. Panchal, H.-J. Choi, C.C. Seepersad, J.K. Allen, and F. Mistree, Integrated Design of Multiscale, Multifunctional Materials and Products (Atlanta, GA: Elsevier, 2009).

    Google Scholar 

  7. S. Ghosh, J. Bai, and P. Raghavan, Mechanics of Materials, 39(3) (2007), pp. 241–266.

    Article  Google Scholar 

  8. R. Hill, J. Mechanics and Physics of Solids, 11 (1963), pp. 357–372.

    Article  Google Scholar 

  9. D.L. McDowell, Int. J. Plasticity, 26(9) (2010), pp. 1280–1309.

    Article  CAS  Google Scholar 

  10. M. Ostoja-Starzewski, Probabilistic Engineering Mechanics, 21 (2006), pp. 112–132.

    Article  Google Scholar 

  11. S. Torquato, Random Heterogeneous Materials (New York: Springer-Verlag, 2002).

    Google Scholar 

  12. H. Singh, A.M. Gokhale, Y. Mao, and J.E. Spowart, Acta Materialia, 54(8) (2006), pp. 2131–2143.

    Article  CAS  Google Scholar 

  13. J.R. Willis, Micromechanics and Inhomogeneity, The Toshio Mura Anniversary Volume, ed. G.J. Weng, M. Taya, and H. Abe (Berlin: Springer-Verlag, 1989), pp. 581–597.

    Google Scholar 

  14. T.E. Lacy, D.L. McDowell, and R. Talreja, Mechanics of Materials, 31 (1999), pp. 831–860.

    Article  Google Scholar 

  15. S. Ghosh, Micromechanical Analysis and Multiscale Modeling using the Voronoi Cell Finite Element Method (Boca Raton, FL: CRC Press/Taylor & Francis, 2011).

    Google Scholar 

  16. S. Swaminathan, S. Ghosh, and N.J. Pagano, J. Composite Materials, 40 (2006), pp. 583–604.

    Article  CAS  Google Scholar 

  17. S. Swaminathan and S. Ghosh, J. Composite Materials, 40 (2006), pp. 605–621.

    Article  CAS  Google Scholar 

  18. R. Pyrz, Composites Science and Technology, 50 (1994), pp. 197–208.

    Article  Google Scholar 

  19. J.E. Spowart, B. Mayurama, and D.B. Miracle, Materials Science and Engineering, A307 (2001), pp. 51–66.

    CAS  Google Scholar 

  20. Z. Shan and A.M. Gokhale, Int. J. Plasticity, 20 (2004), pp. 1347–1370.

    Article  Google Scholar 

  21. S. Ghosh, J. Bai, and D. Paquet, J. Mechanics and Physics of Solids, 57(7) (2009), pp. 1017–1044.

    Article  CAS  Google Scholar 

  22. D.T. Fullwood, S.R. Niezgoda, S.R. Kalidindi, and B.L. Adams, Progress in Materials Science, 55(6) (2010), pp. 477–562.

    Article  CAS  Google Scholar 

  23. S.R. Niezgoda and S.R. Kalidindi, Computers Materials & Continua, 14(2) (2009), pp. 79–97.

    Google Scholar 

  24. S.R. Niezgoda, D.M. Turner, D.T. Fullwood, and S.R. Kalidindi, Acta Materialia, 58 (2010), pp. 4432–4445.

    Article  CAS  Google Scholar 

  25. M.J. Beran, Statistical Continuum Theories (New York: Interscience Publishers, 1968).

    Google Scholar 

  26. J.R. Willis, Advances in Applied Mechanics, 21 (1981), pp. 1–78.

    Article  Google Scholar 

  27. D.T. Fullwood, S.R. Kalidindi, B.L. Adams, and S. Ahmadi, Computers Materials & Continua, 9(1) (2009), pp. 25–39.

    Google Scholar 

  28. G. Landi, S.R. Niezgoda, and S.R. Kalidindi, Acta Materialia, 58(7) (2010), pp. 2716–2725.

    Article  CAS  Google Scholar 

  29. S.R. Kalidindi, S.R. Niezgoda, G. Landi, S. Vachhani, and T. Fast, Computers, Materials & Continua, 395 (2010), pp. 1–23.

    Google Scholar 

  30. T. Kanit, S. Forest, L. Galliet, V. Mounoury, and D. Jeulin, Int. J. Solids and Structures, 40(13–14) (2003), pp. 3647–3679.

    Article  Google Scholar 

  31. D.L. McDowell, Materials Science and Engineering R: Reports, 62(3) (2008), pp. 67–123.

    Article  Google Scholar 

  32. C.P. Przybyla and D.L. McDowell, Int. J. Plasticity, 26(3) (2010), pp. 372–394.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDowell, D.L., Ghosh, S. & Kalidindi, S.R. Representation and computational structure-property relations of random media. JOM 63, 45–51 (2011). https://doi.org/10.1007/s11837-011-0045-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0045-y

Keywords

Navigation