Skip to main content

Advertisement

Log in

Strategies for integration of 3-D experimental data with modeling and simulation

  • Large Datasets in Materials Science, Part I
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

For the most comprehensive modeling and prediction of materials behavior at the microscale, experimentally measured three-dimensional (3-D) microstructural datasets must be incorporated as initial input into computational models. Although the capability to collect and store large amounts of 3-D microstructural data is advancing continuously, computational resources for the processing and simulation can limit the amount of data that can be analyzed. Depending on the features and properties of interest, several approaches can be applied to optimize processing, reduce the amount of data that needs to be simulated, and increase the efficiency of simulations to maximize the statistical significance of microstructure analyses. This paper presents examples of four such approaches to efficient integration of large 3-D datasets into modeling and simulations of mechanical behavior in an efficient yet statistically significant manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Chawla, V.V. Ganesh, and B. Wunsch, Scripta Materialia, 51 (2004), p. 161.

    Article  CAS  Google Scholar 

  2. M. Groeber et al., Acta Materialia, 56 (2008), p. 1257.

    Article  CAS  Google Scholar 

  3. M.A. Groeber et al., Materials Characterization, 57 (2006), p. 259.

    Article  CAS  Google Scholar 

  4. J.J.L. Mulders and A.P. Day, Icotom 14: Textures of Materials, Pts 1 and 2, 495–497 (2005), p. 237.

    Google Scholar 

  5. S.F. Nielsen et al., Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing, 319 (2001), p. 179.

    Article  Google Scholar 

  6. D.J. Rowenhorst, A.C. Lewis, and G. Spanos, Acta Materialia, 58 (2010), p. 5511.

    Article  CAS  Google Scholar 

  7. Z.H. Shan and A.M. Gokhale, Acta Materialia, 49 (2001), p. 2001.

    Article  CAS  Google Scholar 

  8. J.E. Spowart, H.M. Mullens, and B.T. Puchala, JOM, 55(10) (2003), pp. 35–37.

    Article  CAS  Google Scholar 

  9. M.D. Uchic et al., Scripta Materialia, 55 (2006), p. 23.

    Article  CAS  Google Scholar 

  10. S. Zaefferer, S.I. Wright, and D. Raabe, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 39A (2008), p. 374.

    Article  CAS  Google Scholar 

  11. J.Y. Buffiere et al., MRS Bulletin, 33 (2008), p. 611.

    Article  CAS  Google Scholar 

  12. G. Cailletaud et al., Computational Materials Science, 27 (2003), p. 351.

    Article  Google Scholar 

  13. N. Chawla and K.K. Chawla, Journal of Materials Science, 41 (2006), p. 913.

    Article  CAS  Google Scholar 

  14. D.J. Jensen, S.E. Offerman, and J. Sietsma, MRS Bulletin, 33 (2008), p. 621.

    Article  CAS  Google Scholar 

  15. D. Kammer and P.W. Voorhees, MRS Bulletin, 33 (2008), p. 603.

    Article  CAS  Google Scholar 

  16. A.C. Lewis and A.B. Geltmacher, Scripta Materialia, 55 (2006), p. 81.

    Article  CAS  Google Scholar 

  17. J. Madison et al., Acta Materialia, 58 (2010), p. 2864.

    Article  CAS  Google Scholar 

  18. G. Spanos, Scripta Materialia, 55 (2006), p. 3.

    Article  CAS  Google Scholar 

  19. G. Spanos, et al., MRS Bulletin, 33 (2008), p. 597.

    Article  CAS  Google Scholar 

  20. K. Thornton and H.F. Poulsen, MRS Bulletin, 33 (2008), p. 587.

    Article  Google Scholar 

  21. J. MacSleyne et al., Acta Materialia, 57 (2009), p. 6251.

    Article  CAS  Google Scholar 

  22. B.W. White, J.E. Spowart, J.L. Jordan, and N.N. Thadhani, “Strain Rate Effects on the Deformation Behavior of Particles in Epoxy-Based Composites” (Paper presented at the TMS 2010 Annual Meeting, Seattle, WA, 14–18 February 2010).

  23. M. Jackson, J.P. Simmons, and M. De Graef, Model. Sim. Mater. Sci., 18 (2010), p. 65008.

    Article  Google Scholar 

  24. J.P. Simmons et al., Model. Sim. Mater. Sci., 17 (2009), 025002.

    Article  Google Scholar 

  25. M.A.S. Qidwai, A.C. Lewis, and A.B. Geltmacher, Acta Materialia, 57 (2009), p. 4233.

    Article  CAS  Google Scholar 

  26. F.M.A. Carpay et al., Acta Metallurgica, 23 (1975), p. 1473.

    Article  CAS  Google Scholar 

  27. A. Ma, F. Roters, and D. Raabe, Computational Materials Science, 39 (2007), p. 91.

    Article  CAS  Google Scholar 

  28. S. Nemat-Nasser, T. Okinaka, and N. Ni, J. Mechanics and Physics of Solids, 46 (1998), p. 1009.

    Article  CAS  Google Scholar 

  29. B. Orlans-Joliet et al., Acta Metallurgica, 36 (1988), p. 1365.

    Article  Google Scholar 

  30. A.C. Lewis, S.M. Qidwai, and A.B. Geltmacher, Metallurgical And Materials Transactions A-Physical Metallurgy And Materials Science, 41 (2010), p. 2522.

    Article  Google Scholar 

  31. A.C. Lewis et al., Journal of Materials Research, in press (2011), p.

  32. D.T. Fullwood et al., Progress in Materials Science, 55 (2010), p. 477.

    Article  CAS  Google Scholar 

  33. P.G. Young et al., Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 366 (2008), p. 3155.

    Article  CAS  Google Scholar 

  34. H. Aretz et al., Journal De Physique Iv, 11 (2001), p. 115.

    CAS  Google Scholar 

  35. P.R. Dawson, D.P. Mika, and N.R. Barton, Scripta Materialia, 47 (2002), p. 713.

    Article  CAS  Google Scholar 

  36. S. Ghosh and S. Moorthy, Computational Mechanics, 34 (2004), p. 510.

    Article  Google Scholar 

  37. J. Qian et al., Proceedings of the 18th International Meshing Roundtable, (2009), p. 211.

  38. J. Qian et al., International Journal for Numerical Methods in Engineering, 82 (2010), p. 1406.

    Google Scholar 

  39. F.P. Rodrigues et al., Dental Materials, 25 (2009), p. e47.

    Article  Google Scholar 

  40. F. Uyar et al., International Journal of Materials Research, 100 (2009), p. 543.

    CAS  Google Scholar 

  41. L. Wang et al., International Journal of Fatigue, 31 (2009), p. 651.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, A.C., Qidwai, S.M., Jackson, M. et al. Strategies for integration of 3-D experimental data with modeling and simulation. JOM 63, 35–39 (2011). https://doi.org/10.1007/s11837-011-0043-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0043-0

Keywords

Navigation