Skip to main content
Log in

The use of Laue microdiffraction to study small-scale plasticity

  • Advanced Materials Analysis
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Micromechanics is a booming research area experiencing the development of new advanced testing methods at small dimensions. A relatively young but very popular technique involves uniaxial compressing micrometer and sub-micrometer sized objects, usually in the shape of pillars. Research in this field has focused mainly on exploring size effects in single crystal metals. This article demonstrates that Laue microdiffraction allows exploring in-situ the evolving microstructure in the transition regime from elasticity to plasticity, a feature that is not accessible with other techniques but which is essential for the understanding of small-scale plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hull and D.J. Bacon, Introduction to Dislocations (Oxford: Butterworth-Heinemann, 2001).

    Google Scholar 

  2. J.R. Weertman and J. Weertman, Elementary Dislocation Theory (New York: Oxford University Press, 1992).

    Google Scholar 

  3. A.S. Argon, Strengthening Mechanism in Crystal Plasticity, Oxford Series on Materials Modelling (New York: Oxford University Press, 2007).

    Book  Google Scholar 

  4. J.R. Weertman, in: Nanostructured Materials; Processing, Properties and Applications, ed. C.C. Koch (Norwich, NY: William Andrews Publishing, 2002), p. 397.

    Google Scholar 

  5. E. Arzt, Acta Mater., 46 (1998), pp. 5611–5626.

    Article  CAS  Google Scholar 

  6. Y. Estrin, H.S. Kim, and F.R.N. Nabarro, Acta Mater., 55 (2007), pp. 6401–6407.

    Article  CAS  Google Scholar 

  7. H. Van Swygenhoven and J.R. Weertman, Materials Today, 9 (2006), p. 24.

    Article  Google Scholar 

  8. H. Van Swygenhoven et al., Phys. Rev. B, 66 (2004), 024101.

    Article  Google Scholar 

  9. Z. Budrovic et al., Science, 304 (2004), p. 273.

    Article  CAS  Google Scholar 

  10. H. Van Swygenhoven et al., Acta Mater., 54 (2006), pp. 1975–1983.

    Article  Google Scholar 

  11. M.D. Uchic et al., Materials Research Society Symposium Proceedings, vol. 753, ed. E.P. George et al. (Warrendale, PA: Materials Research Society, 2003), pp. BB1.4.1–BB1.4.6.

    Google Scholar 

  12. M.D. Uchic et al., Science, 305 (2004), p. 986.

    Article  CAS  Google Scholar 

  13. M.D. Uchic and D.A. Dimiduk, Mater. Sci. Eng. A, 400 (2005), p. 268.

    Article  Google Scholar 

  14. D.M. Dimiduk et al., Acta Mater., 53 (2005), p. 4065.

    Article  CAS  Google Scholar 

  15. C. Motz et al., Acta Mater., 53 (2005), p. 4269.

    Article  CAS  Google Scholar 

  16. J.R. Greer and W.D. Nix, Phys. Rev. B, 73 (2006), 245410.

    Article  Google Scholar 

  17. C.A. Volkert and E.T. Lilleodden, Philos. Mag., 86 (2006), p. 5567.

    Article  CAS  Google Scholar 

  18. D. Kiener et al., Adv. Eng. Mater., 8 (2006), p. 1119.

    Article  CAS  Google Scholar 

  19. D.M. Dimiduk et al., Science, 312 (2006), p. 1188.

    Article  CAS  Google Scholar 

  20. C.P. Frick et al., Acta Mater., 55 (2007), p. 3845.

    Article  CAS  Google Scholar 

  21. D. Kiener et al., Acta Mater., 56 (2008), p. 580.

    Article  CAS  Google Scholar 

  22. J.R. Greer et al., Mater. Sci. Eng. A, 493 (2008), p. 21.

    Article  Google Scholar 

  23. C.P. Frick et al., Mater. Sci. Eng. A, 489 (2008), p. 319.

    Article  Google Scholar 

  24. K.S. Ng and A.H.W. Ngan, Acta Mater., 56 (2008), p. 1712.

    Article  CAS  Google Scholar 

  25. H. Tang et al., Phys. Rev. Lett., 100 (2008), 185503

    Article  CAS  Google Scholar 

  26. “DIN 50106 — Testing of Metallic Materials; Compression Test” (Deutsches Institut Für Normung E.V., Burggrafenstraße 6, 10787 Berlin, Germany; 1978).

  27. Y.S. Choi et al., Scripta Mater., 57(2007), p. 849.

    Article  CAS  Google Scholar 

  28. H. Zhang et al., Scripta Mater., 54 (2006), p. 181.

    Article  CAS  Google Scholar 

  29. D. Kiener et al., Intern. J. Mater. Sci., 98 (2007), pp. 1047–1053.

    CAS  Google Scholar 

  30. D. Raabe et al., Acta Mater., 55 (2007), pp. 4567–4583.

    Article  CAS  Google Scholar 

  31. P.A. Shade et al., Acta Mater., 57 (2009), p. 4580.

    Article  CAS  Google Scholar 

  32. S. Akarapu et al., Intern. J. Plast., 26 (2010), pp. 239–257.

    Article  CAS  Google Scholar 

  33. D. Kiener et al., Mater. Sci. Eng. A, 459 (2007), pp. 262–272.

    Article  Google Scholar 

  34. H. Bei et al., Appl. Phys. Lett., 91 (2007), 111915.

    Article  Google Scholar 

  35. S. Shim et al., Acta Mater., 57 (2009), p. 503.

    Article  CAS  Google Scholar 

  36. G.E. Ice and R.I. Barabash, in: Dislocation in Solids, Vol. 13, ed. F.R.N. Nabarro and J.P. Hirth (Amsterdam: Elsevier, 2007), Chapter 79.

    Google Scholar 

  37. R.I. Barabash, G.E. Ice, and F.J. Walker, J. Appl. Phys., 93 (2003), p. 1457.

    Article  CAS  Google Scholar 

  38. G.I. Taylor, Proc. R. Soc. Lond. Ser. A-Contain. Pap. Math. Phys. Character, 116 (1927), p. 16.

    Article  CAS  Google Scholar 

  39. W.F. Hosford, The Mechanics of Crystals and Textured Polycrystals (Oxford, U.K.: Oxford University Press, 1993).

    Google Scholar 

  40. W.W. Gerberich et al., J. Mater. Res., 13 (1998), p. 421.

    Article  CAS  Google Scholar 

  41. R. Maass et al., Phys. Rev. Lett., 99 (2007), 145505.

    Article  Google Scholar 

  42. H. Bei et al., Scripta Mater., 57 (2007), p. 397.

    Article  CAS  Google Scholar 

  43. S.S. Brenner, J. Appl. Phys., 28 (1957), p. 1023.

    Article  CAS  Google Scholar 

  44. H. Bei et al., Acta Mater., 56 (2008), p. 4762.

    Article  CAS  Google Scholar 

  45. D.M. Norfleet et al., Acta Mater., 56 (2008), p. 2988.

    Article  CAS  Google Scholar 

  46. J. Zimmermann et al., Scripta Mater., 62 (2010), pp. 746–749.

    Article  CAS  Google Scholar 

  47. H. Bei et al., Appl. Phys. Lett., 93 (2008), 071904.

    Article  Google Scholar 

  48. R. Maass et al., Scripta Mater., 59 (2008), p. 471.

    Article  CAS  Google Scholar 

  49. R. Maass et al., Appl. Phys. Lett., 89 (2006), 151905.

    Article  Google Scholar 

  50. R. Maass et al., Appl. Phys. Lett., 91 (2007), 131909.

    Article  Google Scholar 

  51. S. Van Petegem et al., Nanoletters, 9 (2009), p. 1158.

    Google Scholar 

  52. R. Maass, Ph.D. Thesis EPFL4468, Lausanne, Switzerland (2009).

  53. R. Maass et al., Acta Mater., 57 (2009), p. 5996.

    Article  CAS  Google Scholar 

  54. C.P. Frick et al., Scripta Mater., 62 (2010), p. 492.

    Article  CAS  Google Scholar 

  55. J. Senger et al., Scripta Mater., 58 (2008), pp. 587–590.

    Article  CAS  Google Scholar 

  56. J. Senger et al., Phil. Mag., 90 (2010), pp. 617–628.

    Article  CAS  Google Scholar 

  57. C. Motz et al., Acta Mater., 57 (2009), pp. 1744–1754.

    Article  CAS  Google Scholar 

  58. C.R. Weinberger and W. Cai, Proc. Nat. Acad. Sci., 105 (2009), pp. 14304–1 4307.

    Article  Google Scholar 

  59. J.A. El-Awady et al., Phys. Rev. B, 80 (2009), 104104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Swygenhoven, H., Van Petegem, S. The use of Laue microdiffraction to study small-scale plasticity. JOM 62, 36–43 (2010). https://doi.org/10.1007/s11837-010-0178-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0178-4

Keywords

Navigation