Skip to main content
Log in

Implications of wettability in biological materials science

JOM Aims and scope Submit manuscript

Cite this article

Abstract

Understanding liquid-solid interactions through the behavior of the liquid-solid interface is of paramount interest in many applications ranging from plant surfaces to fabrics, metal casting and biomedical implants. Liquid-solid interactions may or may not include chemical reactions, and the degree of liquid spreading over the solid surface (wetting) may vary based on the chemical properties of the materials involved (surface free energy) and the topography of the solid surface (roughness). The wetting of solid surfaces by biological fluids is often necessary for a chain of biological events to unfurl so that a foreign material may be accepted in vivo and thus become bioactive. We discuss the fundamentals of wettability, and how it pertains to the biological environment. The widespread use of contact angle measurements for the determination of surface free energy is also discussed. The use of contact angle as a general test for biocompatibility has inherent pitfalls as the effects of roughness on contact angle may be significant and misleading about the true chemical nature of the surface. Techniques to characterize the surface free energy are much more reliable, but are not as easily implemented as contact angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. J. Israelachvili and H. Wennerstrom, Nature, 379(6562) (1996), pp. 219–225.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. E.A. Vogler, J. Biomaterials Science-Polymer Edition, 10(10) (1999), pp. 1015–1045.

    Article  CAS  Google Scholar 

  3. M. Gentleman and J. Ruud, Langmuir, 26(3) (2010), pp. 1408–1411.

    Article  CAS  PubMed  Google Scholar 

  4. N. Giovambattista, P.G. Debenedetti, and P.J. Rossky, J. Physical Chemistry B, 111(32) (2007), pp. 9581–9587.

    Article  CAS  Google Scholar 

  5. N. Giovambattista, P.G. Debenedetti, and P.J. Rossky, Proceedings of the National Academy of Sciences of the United States of America, 106(36) (2009), pp. 15181–15185.

    Article  CAS  PubMed  ADS  Google Scholar 

  6. T. Young, Philosophical Transactions of the Royal Society of London, 95 (1805), pp. 65–87.

    Article  ADS  Google Scholar 

  7. H.W. Fox, E.F. Hare, and W.A. Zisman, J. Physical Chemistry, 59(10) (1955), pp. 1097–1106.

    Article  CAS  Google Scholar 

  8. C.J. Vanoss, R.J. Good, and M.K. Chaudhury, Langmuir, 4(4) (1988), pp. 884–891.

    Article  CAS  Google Scholar 

  9. R.J. Good, J. Adhesion Science and Technology, 6(12) (1992), pp. 1269–1302.

    Article  CAS  Google Scholar 

  10. F.M. Fowkes, Industrial & Engineering Chemistry, 56(12) (1964), pp. 40–52.

    Article  CAS  Google Scholar 

  11. W.A. Zisman, Industrial & Engineering Chemistry, 55(10) (1963), pp. 18–38.

    Article  CAS  Google Scholar 

  12. G.N. Lewis, Valence and Structure of Atoms and Molecules—American Chemical Society Monograph Series (New York: Chemical Catalog Company, 1923).

    Google Scholar 

  13. C. Della Volpe, A. Deimichei, and T. Ricco, J. Adhesion Science and Technology, 12(11) (1998), pp. 1141–1180.

    Article  Google Scholar 

  14. C. Della Volpe and S. Slboni, J. Adhesion Science and Technology, 14(2) (2000), pp. 235–272.

    Article  Google Scholar 

  15. C. Bollen et al., Clinical Oral Implants Research, 7 (1996), pp. 201–211.

    Article  CAS  PubMed  Google Scholar 

  16. R.N. Wenzel, Industrial and Engineering Chemistry, 28 (1936), pp. 988–994.

    Article  CAS  Google Scholar 

  17. A.B.D. Cassie and S. Baxter, Transactions of the Faraday Society, 40 (1944), pp. 0546–0550.

    Article  CAS  Google Scholar 

  18. W. Barthlott and C. Neinhuis, Planta, 202(1) (1997), pp. 1–8.

    Article  CAS  Google Scholar 

  19. N.A. Patankar, Langmuir, 20(17) (2004), pp. 7097–7102.

    Article  CAS  PubMed  Google Scholar 

  20. Y.T. Cheng and D.E. Rodak, Applied Physics Letters, 86(14) (2005), pp. 144101-1–144101-3.

    Article  ADS  Google Scholar 

  21. C. Kirkpatrlck et al., Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 212 (1998), p. 775.

    Google Scholar 

  22. J. Pringle and M. Fletcher, Applied and Environmental Microbiology, 45(3) (1983), pp. 811–817.

    CAS  PubMed  Google Scholar 

  23. M. Quirynen et al., J. Dental Research, 72 (1993), pp. 1304–1309.

    CAS  Google Scholar 

  24. L-C. Xu and C. Sledlecki, Biomaterials, 28 (2007), pp. 3273–3283.

    Article  CAS  PubMed  Google Scholar 

  25. D. Absolom et al., Applied and Environmental Microbiology, 46(1) (1983), pp. 90–97.

    CAS  PubMed  Google Scholar 

  26. A. Gallardo-Moreno et al., Colloids and Surfaces A: Physiochemical Engineering Aspects, 248 (2004), pp. 99–103.

    Article  Google Scholar 

  27. Y.J. Lin et al, J. Applied Polymer Science, 115(6) (2010), pp. 3393–3400.

    Article  CAS  Google Scholar 

  28. S.A. Redey et al, J. BiomedicalMaterials Research, 50(3) (2000), pp. 353–364.

    Article  CAS  Google Scholar 

  29. S. Bodhak, S. Bose, and A. Bandyopadhyay, Ada Biomaterialia, 5(6) (2009), pp. 2178–2188.

    Article  CAS  Google Scholar 

  30. L. Hao, J. Lawrence, and K.S. Chian, J. Bhmater. Appl., 19(2) (2004), pp. 81–105.

    Article  CAS  Google Scholar 

  31. A. Rezania et al., Langmuir, 15 (1999), pp. 6931–6939.

    Article  CAS  Google Scholar 

  32. E. Szili et al., Surface Science, 602 (2008), pp. 2402–2411.

    Article  CAS  PubMed  ADS  Google Scholar 

  33. S. Shibuichi et al., J. Physical Chemistry, 100(50) (1996), pp. 19512–19517.

    Article  CAS  Google Scholar 

  34. S. Shibuichi et al., J. Colloid and Interface Science, 208(1) (1998), pp. 287–294.

    Article  CAS  Google Scholar 

  35. T. Onda et al., Langmuir, 12(9) (1996), pp. 2125–2127.

    Article  CAS  Google Scholar 

  36. H. Busscher et al., Applied and Environmental Microbiology, 48(5) (1984), pp. 980–983.

    CAS  PubMed  Google Scholar 

  37. K. Koch et al., Surface Science, 603(10–12) (2009), pp. 1961–1968.

    Article  CAS  ADS  Google Scholar 

  38. W. Barthlott et al., Botanical Journal of the Linnean Society, 126(3) (1998), pp. 237–260.

    Article  Google Scholar 

  39. C. Nelnhuls and W. Barthlott, Annals of Botany, 79(6) (1997), pp. 667–677.

    Article  Google Scholar 

  40. C. Wirth et al., Materials Science and Engineering: C 28(5–6) (2008), pp. 990–1001.

    Article  CAS  Google Scholar 

  41. E. Velzenberger et al., Colloids and Surfaces B: Biointerfaces, 68(2) (2009), pp. 238–244.

    Article  CAS  Google Scholar 

  42. D.D. Deligianni et al., Biomaterials, 22(11) (2001), pp. 1241–1251.

    Article  CAS  PubMed  Google Scholar 

  43. Z. Guo et al., J. Colloid and Interface Science, 303(1) (2006), pp. 298–305.

    Article  CAS  Google Scholar 

  44. H.C. Barshilia et al., Applied Physics Letters, 95(3) (2009), p. 033116–3.

    Article  ADS  Google Scholar 

  45. L. Hao, J. Lawrence, and L. Li, Applied Surface Science, 247(1–4) (2005), pp. 453–457.

    Article  CAS  ADS  Google Scholar 

  46. M.T. Khorasani and H. Mirzadeh, J. Applied Polymer Science, 91(3) (2004), pp. 2042–2047.

    Article  CAS  Google Scholar 

  47. G. McMale et al., Physical Review Letters, 93(3) (2004) p. 036102.

    Article  ADS  Google Scholar 

  48. K. Vasilev et al., Biomaterials, 31(3) (2010), pp. 532–540.

    Article  CAS  PubMed  Google Scholar 

  49. Y.L. Khung et al., Biomems and Nanotechnology lii, vol. 6799, ed. D.V. Nicolau et al. (Belllngham, WA: SPIE, 2008), pp. U63–U74.

    Google Scholar 

  50. U. Edlund, M. Källrot, and A.-C. Albertsson, Israel Journal of Chemistry, 45(4) (2005), pp.429–435.

    Article  CAS  Google Scholar 

  51. S.-H. Hsu and W.M. Sigmund, Langmuir, 26(3) (2010), pp. 1504–1506.

    Article  CAS  PubMed  Google Scholar 

  52. D.J. Wilson et al., Surface and Interface Analysis, 30(1) (2000) pp. 36–39.

    Article  CAS  Google Scholar 

  53. H. Lee, J. Materials Science, 44(17) (2009), pp. 4645–4652.

    Article  CAS  ADS  Google Scholar 

  54. B. Kasemo and J. Gold, Advances in Dental Research, 13(1) (1999), pp. 8–20.

    Article  CAS  PubMed  Google Scholar 

  55. P.V. Jackson et al., J. Materials Science-Materials in Medicine, 15(4) (2004), pp. 507–511.

    Article  CAS  ADS  Google Scholar 

  56. J.M. Schakenraad et al., J. Biomedical Materials Research, 20(6) (1986), pp. 773–784.

    Article  CAS  Google Scholar 

  57. P.B. van Wachem et al., Biomaterials, 6(6) (1985), pp. 403–408.

    Article  PubMed  Google Scholar 

  58. J.H. Lee et al., J. Colloid and Interface Science, 230(1) (2000), pp. 84–90.

    Article  CAS  Google Scholar 

  59. G. Altankov, K. Richau, and T. Groth, Materialwissenschaft Und Werkstofftechnik, 34(12) (2003), pp. 1120–1128.

    Article  CAS  Google Scholar 

  60. R. Tzoneva, N. Faucheux, and T. Groth, Biochimica Et Biophysics Ada-General Subjects, 1770(11) (2007), pp. 1538–1547.

    Article  CAS  Google Scholar 

  61. M.J. Busscher, I. Stokroos, and J.M. Schakenraad, Cells and Materials, 1(1) (1991), pp. 49–57.

    Google Scholar 

  62. J.M. Schakenraad, I. Stokroos, and H.J. Busscher, Biofouling, 4 (1991), pp. 61–70.

    Article  CAS  Google Scholar 

  63. T. Groth and G. Altankov, New Biomedical Materials—Basic and Applied Studies, vol. 16, ed. P.I. Haris and D. Chapman (Amsterdam: I O S Press, 1998), pp. 12–23.

    Google Scholar 

  64. G. Altankov and T. Groth, J. Biomaterials Science-Polymer Edition, 8(4) (1996), pp. 299–310.

    Article  CAS  Google Scholar 

  65. J.B. Lhoest et al., J. Biomedical Materials Research, 41(1) (1998), pp. 95–103.

    Article  CAS  Google Scholar 

  66. T. Groth and G. Altankov, Biomaterials, 17(12) (1996), pp. 1227–1234.

    Article  CAS  PubMed  Google Scholar 

  67. N. Giovambattista et al., Proceedings of the National Academy of Sciences of the United States of America, 105(7) (2008), pp. 2274–2279.

    Article  CAS  PubMed  ADS  Google Scholar 

  68. A. El-Ghannam, E. Hamazawy, and A. Yehla, J. Biomedical Materials Research, 55(3) (2001), pp. 387–395.

    Article  CAS  Google Scholar 

  69. M.R. Bet et al., Biomaterials, 24(1) (2003), pp. 131–137.

    Article  CAS  PubMed  ADS  Google Scholar 

  70. J.D. Andrade et al., J. Colloid and Interlace Science, 72(3) (1979), pp. 488–494.

    Article  CAS  MathSciNet  Google Scholar 

  71. E.C. Combe, B.A. Owen, and J.S. Hodges, Dental Materials, 20(3) (2004), pp. 262–268.

    Article  CAS  PubMed  Google Scholar 

  72. C. Fredriksson et al., J. Materials Science-Materials in Medicine, 9(12) (1998), pp. 785–788.

    Article  CAS  Google Scholar 

  73. K. Liefeith et al., Biomedizinische Technik, 43(11) (1998), pp. 330–335.

    Article  CAS  PubMed  Google Scholar 

  74. R. Blossey, Nat. Mater., 2(5) (2003), pp. 301–306.

    Article  CAS  PubMed  ADS  Google Scholar 

  75. H.T. Spijker et al., Biomaterials, 24(26) (2003), pp. 4717–4727.

    Article  CAS  PubMed  Google Scholar 

  76. M.L. González-Martín et al., J. Materials Science, 34(23) (1999), pp. 5923–5926.

    Article  Google Scholar 

  77. H.J. Busscher et al., J. Colloid and Interface Science, 95(1) (1983), pp. 23–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Nychka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nychka, J.A., Gentleman, M.M. Implications of wettability in biological materials science. JOM 62, 39–48 (2010). https://doi.org/10.1007/s11837-010-0107-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0107-6

Keywords

Navigation