Skip to main content
Log in

Digital image correlation analysis of the deformation behavior of Pb-free solders at intermediate strain rates

  • Lead-Free Solders / Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Digital image correlation (DIC) is a powerful tool for quantifying local stresses and strains. The demand for environmentally benign Pb-free solders and the push toward smaller portable electronics will make it more likely for solder interconnects to en-counter mechanical shock through dropping or mishandling. Thus, quantifying the strain rate behavior of Pb-free solders from the quasi-static to the shock regime is essential for developing reliable numerical models of the mechanical shock behavior. In this paper we report on the use of DIC to measure the local strain and strain rate occurring in the neck of Sn-3.5Ag-0.7Cu specimens, at the onset of necking. Tensile tests were conducted in the range 10−3s−1–30 s−1. A parametric study was conducted to identify the optimum DIC parameters for the experimental setup. The effect of microstructure and applied strain rate on the local values of strain and strain rate is discussed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Chawla, Int. Mater. Rev., 54(6) (2009), pp. 333–367.

    Article  Google Scholar 

  2. J. Glazer, J. Electron. Mater., 23 (1994), p. 693.

    Article  CAS  ADS  Google Scholar 

  3. J. Glazer, Int. Mater. Rev., 40(2) (1995), pp. 65–93.

    CAS  Google Scholar 

  4. M. McCormack and S. Jin, JOM, 45(7) (1993), pp. 36–40.

    CAS  Google Scholar 

  5. P.R. Vianco and D.R. Frear, JOM, 45(7) (1993), pp. 14–18.

    CAS  Google Scholar 

  6. W.J. Plumbridge, J. of Mater. Soi. 3 (1996), p. 2501.

    Article  ADS  Google Scholar 

  7. R.S. Sidhu and N. Chawla, Metall. Mater. Trans. 39A (2008), p. 799.

    Article  CAS  Google Scholar 

  8. R.S. Sidhu, X. Deng, and N. Chawla, Metall. Mater. Trans. 39A (2008), p. 340.

    Article  CAS  Google Scholar 

  9. M. Kerr and N. Chawla, Acta Mater., 52 (2004), p. 4527.

    Article  CAS  Google Scholar 

  10. J.E. Field, S.M. Walley, W.G. Proud, H.T. Goldrein, and C.R. Siviour, Int. J. Impact Eng., 30 (2004), p. 725.

    Article  Google Scholar 

  11. T.Y. Tee, H.S. Ng, C.T. Lim, E. Pek, and Z. Zhong, Microelectron. Reliab., 44 (2004), p. 1131.

    Article  Google Scholar 

  12. D. Reiff and E. Bradley, Proc. 55th Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 2005), pp. 1519–1525.

    Google Scholar 

  13. M. Date, T. Shoji, M. Fujiyoshi, K. Sato, and K.N. Tu, 54th Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 2004), pp. 668–674.

    Google Scholar 

  14. K.T. Tsai, F.L. Liu, E.H. Wong, and R. Rajoo, Solder. Surf. Mt. Technol., 18(2) (2006), p. 12.

    Article  CAS  Google Scholar 

  15. P. Pandher and M. Boureghda, IEEE 45th Annual International Reliability Physics Symposium (Piscataway, NJ: IEEE, 2007), pp. 107–112.

    Book  Google Scholar 

  16. K. Newman, Proc. 55th Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 2005), pp. 1194–1200.

    Google Scholar 

  17. J.Y.H. Chia, B. Cotterell, and T.C. Chai, Mater. Sci. and Eng. A, 417 (2006), p. 259.

    Article  Google Scholar 

  18. B.L. Boyce and T.B. Crenshaw, “Servohydraulic Methods For Mechanical Testing in the Sub-Hopkinson Rate Regime up to Strain Rates of 500 1/s,” Sandia National Laboratory Report SAND2005-5678 (2005).

  19. K.E. Yazzie, H. Fei, J.J. Williams, H. Jiang, and N. Chawla, J. Electron. Mater., 38 (2009), p. 2746.

    Article  CAS  ADS  Google Scholar 

  20. ARAMIS User Manual (GOM, Braunschweig, Germany, 2005).

  21. F. Hild and S. Roux, Strain 42 (2006), p. 69.

    Article  Google Scholar 

  22. M. Sutton, W. Wolters, W. Peters, W. Ranson, and S. McNeill, Image Vision Comput., 1 (1983), p. 133.

    Article  Google Scholar 

  23. M.A. Sutton, M. Cheng, W.H. Peters, Y.J. Chao, and S.R. McNeill, Image Vision Comput., 4 (1986), 143.

    Article  Google Scholar 

  24. W.N. Sharpe, Springer Handbook of Experimental Solid Mechanics (New York: Springer, 2008).

    Book  Google Scholar 

  25. M.A. Sutton, J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements (New York: Springer, 2009).

    Google Scholar 

  26. W. An and T.E. Carlsson, Opt. Laser. Eng., 40 (2003), p. 529.

    Article  Google Scholar 

  27. I. Yamaguchi, J. Phys. E: Sci. Instrum., 14 (1981), p. 1270.

    Article  CAS  ADS  Google Scholar 

  28. D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. Van Hemelrijck, and A. Habraken, Opt. Laser Eng., 44 (2006), p. 1132.

    Article  Google Scholar 

  29. Z. Wang, H. Li, J. Tong, and J. Ruan, Exper. Mech., 47 (2007), p. 701.

    Article  Google Scholar 

  30. T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, Opt. Eng., 46 (2007), p. 051004.

    Article  ADS  Google Scholar 

  31. J. Orteu, L. Robert, Y. Surrel, P. Vacher, B. Wattrisse, M. Bornert, F. Brémand, P. Doumalin, J. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, and J. Molimard, Exp. Mech., 49 (2009), p. 353.

    Article  Google Scholar 

  32. B. Wattrisse, A. Chrysochoos, J. Muracciole, and M. Némoz-Gaillard, Exp. Mech., 41 (2001), p. 29.

    Article  Google Scholar 

  33. I. Scheider, W. Brocks, and A. Cornec, J. Eng. Mater.-T ASME, 126 (2004), p. 70.

    Article  Google Scholar 

  34. F. Sánchez-Arévalo, T. García-Fernández, G. Pulos, and M. Villagrán-Muniz, Mater. Charact., 60 (2009), p. 775.

    Article  Google Scholar 

  35. F. Sánchez-Arévalo and G. Pulos, Mater. Charact., 59 (2008), p. 1572.

    Article  Google Scholar 

  36. P.L. Reu and T.J. Miller, J. Strain Anal. Eng., 43 (2008), p. 673.

    Article  Google Scholar 

  37. M. Tschopp, B. Bartha, W. Porter, P. Murray, and S. Fairchild, Metall. Mater. Trans., 40A (2009), p. 2363.

    Article  CAS  Google Scholar 

  38. H. Jin, W.-Y. Ku, and J. Korellis, J. Strain Anal. Eng., 43 (2008), p. 719.

    Article  Google Scholar 

  39. J. Périé, S. Calloch, C. Cluzel, and F. Hild, Exp. Mech., 42 (2002), p. 318.

    Article  Google Scholar 

  40. M. Grédiac, Compos. Part A — Appl S, 35 (2004), p. 751.

    Article  Google Scholar 

  41. D. Zhang and D.D. Arola, J. Biomed. Opt., 9 (2004), p. 691.

    Article  PubMed  ADS  Google Scholar 

  42. P. Thurner, B. Erickson, R. Jungmann, Z. Schriock, J. Weaver, G. Fantner, G. Schitter, D. Morse, and P. Hansma, Eng. Fract. Mech., 74 (2007), p. 1928.

    Article  Google Scholar 

  43. S. Park, R. Dhakal, L. Lehman, and E. Cotts, Acta Mater., 55 (2007), p. 3253.

    Article  CAS  Google Scholar 

  44. R.D. Pendse and P. Zhou, Microelectron. Reliab., 42 (2002), p. 301.

    Article  Google Scholar 

  45. Yaofeng Sun, J. Pang, Xunqing Shi, and J. Tew, The Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 2006 (Piscataway, NJ: IEEE, 2006), pp. 921–927.

    Google Scholar 

  46. L. Kehoe, V. Guenebaut, and P. Kelly, Proc. 54th Electronic Components & Technology Conference (Piscataway, NJ: IEEE, 2004), pp. 120–127.

    Google Scholar 

  47. Y. Sun and J.H. Pang, Microelectron. Reliab., 48 (2008), p. 310.

    Article  Google Scholar 

  48. P. Lall, D.R. Panchagade, D. Iyengar, S. Shantaram, and H. Schrier, IEEE Transactions on Components and Packaging Technologies, 32 (2009), p. 378.

    Article  CAS  Google Scholar 

  49. X. Shi, H. Pang, X. Zhang, Q. Liu, and M. Ying, IEEE Transactions on Components and Packaging Technologies, 27 (2004), p. 659.

    Article  Google Scholar 

  50. G. Dieter, Mechanical Metallurgy (London: McGraw-Hill Science/Engineering/Math, 1986).

    Google Scholar 

  51. P.W. Bridgman, Studies in Large Plastic Flow and Fracture with Special Emphasis on the Effects of Hydrostatic Pressure (New York: McGraw-Hill, 1952).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chawla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazzie, K.E., Williams, J.J., Kingsbury, D. et al. Digital image correlation analysis of the deformation behavior of Pb-free solders at intermediate strain rates. JOM 62, 16–21 (2010). https://doi.org/10.1007/s11837-010-0102-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0102-y

Keywords

Navigation