JOM

, Volume 62, Issue 4, pp 10–18 | Cite as

The fracture toughness of bulk metallic glasses

Bulk Metallic Glasses II Overview

Abstract

Stiffness, strength, and toughness are the three primary attributes of a material, in terms of its mechanical properties. Bulk metallic glasses (BMGs) are known to exhibit elastic moduli at a fraction lower than crystalline alloys and have extraordinary strength. However, the reported values of fracture toughness of BMGs are highly variable; some BMGs such as the Zr-based ones have toughness values that are comparable to some high strength steels and titanium alloys, whereas there are also BMGs that are almost as brittle as silicate glasses. Invariably, monolithic BMGs exhibit no or low crack growth resistance and tend to become brittle upon structural relaxation. Despite its critical importance for the use of BMGs as structural materials, the fracture toughness of BMGs is relatively poorly understood. In this paper, we review the available literature to summarize the current understanding of the mechanics and micromechanisms of BMG toughness and highlight the needs for future research in this important area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.L. Johnson, MRS Bull., 24 (1999), p.42.Google Scholar
  2. 2.
    A. Inoue, Acta Mater., 48 (2000), p. 279.Google Scholar
  3. 3.
    A.L. Greer and E. Ma, MRS Bull., 32 (1998), p. 611.Google Scholar
  4. 4.
    M.F. Ashby and A.L. Greer, Scr. Mater., 54 (2006), p. 321.Google Scholar
  5. 5.
    A.R. Yavari, J.J. Lewandowski, and J. Eckert, MRS Bull., 32 (2007), p. 635.Google Scholar
  6. 6.
    C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Wafer, 55 (2007), p. 4067.Google Scholar
  7. 7.
    M. Chen, Annu. Rev. Mater. Res., 38 (2008), p. 445.ADSGoogle Scholar
  8. 8.
    M.E. Launey and R.O. Ritchie, Adv. Mater, 21 (2009), p. 2103.Google Scholar
  9. 9.
    H. Kimura and T. Masumoto, Scr. Metell., 9 (1975), p. 211.Google Scholar
  10. 10.
    L.A. Davis, J. Mater. Sci., 10 (1975), p. 1557.ADSGoogle Scholar
  11. 11.
    D.G. Ast and D. Krenitsky, Mater. Sci. Eng., 23 (1976), p. 241.Google Scholar
  12. 12.
    A. Peker, and W.L. Johnson, Appl. Phys. Lett., 63 (1993), p. 2342.ADSGoogle Scholar
  13. 13.
    A. Inoue and T. Zhang, Mater. Trans. JIM, 37 (1996), p. 185.Google Scholar
  14. 14.
    Y. Li et al, MRS. Bull., 32 (2007), p. 624.Google Scholar
  15. 15.
    C.J. Gibert, R.O. Ritchie, and W.L. Johnson, Appl. Phys. Left., 71 (1997), p. 476.ADSGoogle Scholar
  16. 16.
    C.J. Gibert, V. Schroeder, and R.O. Ritchie, Metall. Mater. Trans., 30A (1999), p. 1739.Google Scholar
  17. 17.
    P. Lowhaphandu and J.J. Lewandowski, Scr. Mater., 38 (1998), p. 1811.Google Scholar
  18. 18.
    J.J. Lewandowski, Mater. Trans., 42 (2001), p. 633.Google Scholar
  19. 19.
    C.P. Kim et al, Scr. Mater., 60 (2009), p. 80.Google Scholar
  20. 20.
    J.H. Schneibel, J.A. Horton, and P.R. Munroe, Metall. Mater. Trans., 32A (2001), p. 2819.Google Scholar
  21. 21.
    A. Kawashima et al. Mater. Trans., 46 (2005), p. 1725.MathSciNetGoogle Scholar
  22. 22.
    ASTM E399, Test Method for Plane-Strain Fracture Toughness of Metallic Materials (Philadelphia, PA: ASTM, 1994).Google Scholar
  23. 23.
    J.J. Lewandowski, W.H. Wang, and A.L. Greer, Philos. Mag. Lett., 85 (2005), p. 77.ADSGoogle Scholar
  24. 24.
    J.J. Lewandowski et al, Appl. Phys. Lett., 92 (2008), p. 091918.ADSGoogle Scholar
  25. 25.
    P. Jia et al, Scr. Mater., 61 (2009), p. 137.Google Scholar
  26. 26.
    M.D. Demetriou et al, Appl. Phys. Lett., 95 (2009), p. 041907.ADSGoogle Scholar
  27. 27.
    R.D. Conner et al, Scr. Mater., 37 (1997), p. 1373.Google Scholar
  28. 28.
    J. Schroers and W.L. Johnson, Phys. Rev. Lett., 93 (2004), p. 255506.PubMedADSGoogle Scholar
  29. 29.
    X.J. Gu et al, Acta Mater., 58 (2010), p. 1708.Google Scholar
  30. 30.
    P. Wesseling et al, Scr. Mater., 51 (2004), p. 151.Google Scholar
  31. 31.
    X.J. Gu et al, Scr. Mater, 60 (2009), p. 1027.ADSGoogle Scholar
  32. 32.
    C. Can Aydiner et al, J. Non-Cryst. Solids, 316 (2003), p. 82.ADSGoogle Scholar
  33. 33.
    C. Can Aydiner and E. Ustundag, Mech. Mater., 37 (2005), p. 201.Google Scholar
  34. 34.
    M.E. Launey, R. Busch, and J.J. Kruzic, Acta Mater., 56 (2008), p. 500.Google Scholar
  35. 35.
    V. Keryvin et al, J. Non-Cryst. Solids, 352 (2006), p. 2863.ADSGoogle Scholar
  36. 36.
    V. Keryvin, Y. Nadot, and Y. Yokoyama, Scr. Mater., 57 (2007), p. 145.Google Scholar
  37. 37.
    Y. Yokoyama et al. Mater. Trans., 45 (2004), p. 1819.Google Scholar
  38. 38.
    A. Shamimi Nouri et al, Philos. Mag. Lett., 88 (2008), p. 853.ADSGoogle Scholar
  39. 39.
    K. Flores and R. Dauskardt, Scr. Mater., 41 (1999), p. 937.Google Scholar
  40. 40.
    D. Rittel and A.J. Rosakis, Eng. Fracture Mech., 72 (2005), p. 1905.Google Scholar
  41. 41.
    H.A. Hassan, L. Kecskes, and J.J. Lewandowski, Metall. Mater. Trans., 39A (2008), p. 2077.Google Scholar
  42. 42.
    F. Spaepen, Acta Metall., 25 (1977), p. 407.Google Scholar
  43. 43.
    M.H. Cohen and D. Turnbull, J. Chem. Phys., 34 (1961), p. 120.ADSGoogle Scholar
  44. 44.
    T. Egami, Intermetallics, 14 (2006), p. 882.Google Scholar
  45. 45.
    Y.Q. Cheng et al, Appl. Phys. Lett., 53 (2008) 051910ADSGoogle Scholar
  46. 46.
    T.W. Wu and F. Spaepen, Philos. Mag. B, 61 (1990), p. 739.Google Scholar
  47. 47.
    U. Ramamurty et al, Scr. Mater., 47 (2002), p. 107.Google Scholar
  48. 48.
    P. Murali and U. Ramamurty, Acta Mater., 53 (2005), p. 1467.Google Scholar
  49. 49.
    D. Suh and R.H. Dauskardt, Scr. Mater., 42 (2000), p. 233.Google Scholar
  50. 50.
    D. Suh et al, Acta Mater., 50 (2002), p. 537.Google Scholar
  51. 51.
    W. Dmowski et al. Mater. Sci. Eng. A, 471 (2007), p. 125.Google Scholar
  52. 52.
    N. Nagendra et al, Acta Mater., 48 (2000), p. 2603.Google Scholar
  53. 53.
    J. Basu et al, Phil. Mag., 83 (2003), p. 1747.ADSGoogle Scholar
  54. 54.
    Y. Yokoyama et al, Acta Mater., 56 (2008), p. 6097.Google Scholar
  55. 55.
    Y. Yokoyama et al. Mater. Trans., 48 (2007), p. 1276.MathSciNetGoogle Scholar
  56. 56.
    D. Suh and R.H. Dauskardt, Ann. Chim. Sci. Mater., 27 (2002), p. 25.Google Scholar
  57. 57.
    A. van den Beukel and J. Seitsma, Acta Metall. Mater., 38 (1990), p. 383.Google Scholar
  58. 58.
    A. van den Beukel and S. Radelaar, Acta Metall., 31 (1983), p. 419.Google Scholar
  59. 59.
    R. Raghavan, P. Murali, and U. Ramamurty, Acta Mater., 57 (2009), p. 3332.Google Scholar
  60. 60.
    R. Raghavan, P. Murali, and U. Ramamurty, Intermetallics, 14 (2006), p. 1051.Google Scholar
  61. 61.
    M.L. Falk, Phys. Rev. B, 60 (1999), p. 7062.ADSGoogle Scholar
  62. 62.
    W.L. Johnson and K. Samwer, Phys. Rev. Lett., 95 (2005), p. 195501.PubMedADSGoogle Scholar
  63. 63.
    D. Pan et al, Proc. Natl. Acad. Sci. USA, 105 (2008), p. 14769.PubMedADSGoogle Scholar
  64. 64.
    D. Pan et al, Appl. Phys. Lett., 95 (2009), p. 141909.ADSGoogle Scholar
  65. 65.
    F.H. Dalla Torre et al, Appl. Phys. Lett., 89 (2006), p. 091918.ADSGoogle Scholar
  66. 66.
    A. Dubach et al, Acta Mater., 56 (2008), p. 4635.Google Scholar
  67. 67.
    X.K. Xi et al, Phys. Rev. Lett., 94 (2005), p. 125510.PubMedADSGoogle Scholar
  68. 68.
    K.M. Flores and R.H. Dauskardt, J. Mech. Phys. Solids, 54 (2006), p. 2418.MATHADSGoogle Scholar
  69. 69.
    R. Varadarajan et al, Metall. Mater. Trans A, 41A (2010), p. 149.ADSGoogle Scholar
  70. 70.
    R. Narasimhan et al, J. Phys. D: Appl. Phys., 42 (2009), p. 214005.ADSGoogle Scholar
  71. 71.
    M.N.M. Patnaik, R. Narasimhan, and U. Ramamurty, Acta Mater., 52 (2004), p. 3335.Google Scholar
  72. 72.
    V. Keryvin et al, Phil. Mag., 88 (2008) 1773.ADSGoogle Scholar
  73. 73.
    J.W. Hutchinson, J. Mech. Phys. Solids, 16 (1968), p. 13; J.R. Rice and G.F. Rosengren, J. Mech. Phys. Solids, 16 (1968), p. 1.MATHADSGoogle Scholar
  74. 74.
    P. Tandaiya, R. Narasimhan, and U. Ramamurty, Acta Mater., 55 (2007), p. 6541.Google Scholar
  75. 75.
    P. Tandaiya, U. Ramamurty, and R. Narasimhan, J. Mech. Phys. Solids, 57 (2009), p. 1880.ADSGoogle Scholar
  76. 76.
    L. Anand and C. Su, J. Mech. Phys. Solids, 53 (2005), p. 1362.MATHMathSciNetADSGoogle Scholar
  77. 77.
    S.F. Pugh, Phil. Mag., 45 (1950), p. 823.Google Scholar
  78. 78.
    A. Kelly, W.R. Tyson, and A.H. Cottrell, Phil. Mag., 15(1967), p. 567.ADSGoogle Scholar
  79. 79.
    J.R. Rice, and R. Thomson, Phil. Mag. 29 (1974), p. 73.ADSGoogle Scholar
  80. 80.
    H.S. Chen, J.T. Krause, and E. Coleman, J. Non-Cryst. Solids, 18 (1975), p. 157.ADSGoogle Scholar
  81. 81.
    P. Tandaiya et al, Acta Mater., 56 (2008), p. 6077.Google Scholar
  82. 82.
    D.L. Henann and L. Anand, Acta Mater., 57 (2009), p. 6057.Google Scholar
  83. 83.
    W.H. Wang, J.Appl. Phys., 99 (2006), 093506.ADSGoogle Scholar
  84. 84.
    Y. Zhang and A.L. Greer, J. Alloys Compd., 434–435 (2007), p. 2.Google Scholar
  85. 85.
    X.J. Gu et al, Appl. Phys. Lett., 88 (2006), p. 211905.ADSGoogle Scholar
  86. 86.
    Y.Q. Cheng et al, Acta Mater., 57 (2009) p. 3253; Acta Mater., 3253 56 (2008) p. 5263; Phys. Rev. B, 78 (2008) 014207ADSGoogle Scholar
  87. 87.
    C.C. Hays, C.P. Kim, and W.L. Johnson, Phys. Rev. Left, 84 (2000), p. 2901.ADSGoogle Scholar
  88. 88.
    F. Szuecs, C.P. Kim, and W.L. Johnson, Acta Mater., 49 (2001), p. 1507.Google Scholar
  89. 89.
    K.M. Flores, W.L. Johnson, and R.H. Dauskardt, Scr.Mafer.,49(2003),p.1181.Google Scholar
  90. 90.
    D.C. Hofmann et al. Nature, 451 (2008), p. 1085.PubMedADSGoogle Scholar
  91. 91.
    D.C. Hofmann et al, Scr. Mater., 59 (2008), p. 684.Google Scholar
  92. 92.
    D.C. Hofmann et al, Proc. Natl. Acad. Sci. USA, 23 (2008), p. 20136.Google Scholar
  93. 93.
    M.E. Launey et al, Appl. Phys. Lett., 94 (2009), p. 241910.ADSGoogle Scholar
  94. 94.
    K. Boopathy et al, J. Mater. Res., 24 (2009), p. 3611.ADSGoogle Scholar
  95. 95.
    W.J. Clegg et al. Nature, 347 (1990), p. 455.ADSGoogle Scholar
  96. 96.
    H.C. Cao and A.G. Evans, Acta Metall. Mater., 39 (1991), p. 2997.Google Scholar
  97. 97.
    A.T. Alpas and J.D. Embury, Scr. Metall., 22 (1988), p. 265.Google Scholar
  98. 98.
    Y. Leng and T.H. Courtney, J. Mater. Sci., 24 (1989), p. 2006.ADSGoogle Scholar
  99. 99.
    Y. Leng and T.H. Courtney, Metall. Trans., 21A (1990), p. 2159.Google Scholar
  100. 100.
    Y. Leng and T.H. Courtney, J. Mater. Sci., 26 (1991), p. 588.ADSGoogle Scholar
  101. 101.
    J.S. Park et al. Mater. Sci. Eng., 417 (2006), p. 239.Google Scholar
  102. 102.
    J.S. Park et al. Mater. Sci. Eng., 447 (2007), p. 319.Google Scholar
  103. 103.
    Y.H. Go et al. Mater. Sci. Eng., 460461 (2007), p. 377.Google Scholar
  104. 104.
    Y. Wang et al, Proc. Natl. Acad. Sci. USA, 104 (2007), p. 11155.PubMedADSGoogle Scholar
  105. 105.
    A. Donohue et al, Appl. Phys. Lett., 91 (2007), p. 241905.ADSGoogle Scholar
  106. 106.
    T.G. Nieh and J. Wadsworth, Intermetallics, 16 (2008), p. 1156.Google Scholar
  107. 107.
    L. Zhang et al, Acta Mater., 57 (2009), p. 1154.Google Scholar
  108. 108.
    Y. Zhang, W.H. Wang, and A.L. Greer, Nature Wafer, 5 (2006), p. 857.ADSGoogle Scholar
  109. 109.
    R. Bhowmick et al, Acta Mater., 54 (2006), p. 4221.Google Scholar
  110. 110.
    R. Raghavan et al, Scr. Mater., 59 (2008), p. 167.Google Scholar
  111. 111.
    A. Dubach et al, Scr. Mater., 60 (2009), p. 567.Google Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  3. 3.Department of Materials Science and EngineeringThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations