JOM

, Volume 62, Issue 1, pp 41–46 | Cite as

Dynamic fracture resilience of elk antler: Biomimetic inspiration for improved crashworthiness

  • Robb M. Kulin
  • Po-Yu Chen
  • Fengchun Jiang
  • Joanna McKittrick
  • Kenneth S. Vecchio
Materials for Grashworthiness and Defense Research Summary

Abstract

The antler of the North American elk has been shown to have impressive fracture resistance under quasi-static loads, but given its viscoelastic behavior and impact nature of loading, questions remain as to its mechanical, and in particular, fracture behavior under dynamic loading. Samples were tested using a unique split-pressure Hopkin-son bar (SPHB) for four-point bending experiments in order to measure the fracture toughness of this material Interestingly, the hierarchical structure of antler had a strong influence on crack propagation characteristics, and cracks tended to propagate along the osteonal growth direction, whether loaded parallel or perpendicular to the osteonal growth direction. This occurred to such a degree so as to stop all crack propagation through the sample on transverse specimens, thus inhibiting the ability to measure a valid crack initiation toughness and demonstrating the extreme resilience of antler to resist dynamic fracture. The high resilience of antler to impact loading may serve as biomimetic inspiration to future material development for crashworthiness and defense applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.Y. Chen, A.G. Stokes, and J. McKittrick, Acta Biomaterialia, 5(2) (2009), pp. 693–706.CrossRefPubMedGoogle Scholar
  2. 2.
    R.Y. Chen, J. Mechanical Behavior of Biomedical Materials, 1(3) (2008), pp. 208–226.CrossRefGoogle Scholar
  3. 3.
    J.D. Currey, J. Biomechanics, 12(4) (1979), pp. 313–319.CrossRefGoogle Scholar
  4. 4.
    P.Y. Chen, Materials Research Society Symposium Proceeding 1132E (Warrendale, FA: MRS, 2008), doi: 10.1557/PROC-1132-Z01 -04.Google Scholar
  5. 5.
    J.D. Currey, J. Biomechanics, 23(8) (1990), pp. 837–844.CrossRefGoogle Scholar
  6. 6.
    A. Rajaram and N. Ramanathan, Calcified Tissue International, 34(3) (1982), pp. 301–305.CrossRefPubMedGoogle Scholar
  7. 7.
    M.E. Launey et al., “Mechanistic Aspects of Fracture and R-curve Behavior in Elk Antler Bone” (submitted to Acta Biomaterialia, 2009).Google Scholar
  8. 8.
    J.D. Currey, Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 304(1121) (1984), pp. 509–518.CrossRefPubMedADSGoogle Scholar
  9. 9.
    J.G. Skedros, P. Durand, and R.D. Bloebaum, J. Bone and Mineral Research, 10(Suppl 1) (1995), p. S441.Google Scholar
  10. 10.
    J. Henshaw, Nature, 231(5303) (1971), pp. 469–469.CrossRefPubMedADSGoogle Scholar
  11. 11.
    D.I. Chapman, Mammal Review, 5(4) (1975), pp. 121–172.CrossRefGoogle Scholar
  12. 12.
    H.J. Rolf and A. Enderle, The Anatomical Record, 255(1) (1999), pp. 69–77.CrossRefPubMedGoogle Scholar
  13. 13.
    ASTM, “Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics,” ASTM-C1421-01b, ASTM Annual Book of Standards (West Conshohocken, PA: ASTM, 2006).Google Scholar
  14. 14.
    G.T. Gray, ASM HandbookVol 8, Mechanical Testing and Evaluation, ed. M. Kuhn and D. Medlin (Materials Park, OH: ASM International, 2000), pp. 462–476.Google Scholar
  15. 15.
    F. Jiang and K. Vecchio, Applied Mechanics Reviews, 62(6) (2009), doi: 10.1115/1.3124647.Google Scholar
  16. 16.
    R. Kulin, F. Jiang, and K. Vecchio, JOM, 60(6) (2008), pp. 39–44.CrossRefGoogle Scholar
  17. 17.
    R.R. Adharapurapu, F. Jiang, and K.S. Vecchio, Materials Science and Engineering C, 26(8) (2006), pp. 1325–1332.CrossRefGoogle Scholar
  18. 18.
    R.K. Nalla, J.J. Kruzic, and R.O. Ritchie, Bone, 34(5) (2004), pp. 790–798.CrossRefPubMedGoogle Scholar
  19. 19.
    R.K. Nalla et al., J. Biomechanics, 38(7) (2005), pp. 1517–1525.CrossRefGoogle Scholar
  20. 20.
    A.C. Kitchener, Biomechanics and Evolutbn, ed. J.M.V. Rayner and R.J. Wootton (Cambridge, U.K.: Cambridge University Press, 1991), pp. 229–253.Google Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Robb M. Kulin
    • 1
  • Po-Yu Chen
    • 1
  • Fengchun Jiang
    • 3
  • Joanna McKittrick
    • 2
  • Kenneth S. Vecchio
    • 3
  1. 1.Materials Science and Engineering ProgramUniversity of California-San DiegoLa JollaUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of California-San DiegoLa JollaUSA
  3. 3.Department of NanoEngineeringUniversity of California San DiegoLa JollaUSA

Personalised recommendations