Skip to main content
Log in

Laser shocking of materials: Toward the national ignition facility

  • Materials for Crashworthiness and Defense
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In recent years a powerful experimental tool has been added to the arsenal at the disposal of the materials scientist investigating materials response at extreme regimes of strain rates, temperatures, and pressures: laser compression. This technique has been applied successfully to mono-, poly-, and nanocrystalline metals and the results have been compared with predictions from analytical models and molecular dynamics simulations. Special flash x-ray radiography and flash x-ray diffraction, combined with laser shock propagation, are yielding the strength of metals at strain rates on the order of 107–108 s−1 and resolving details of the kinetics of phase transitions. A puzzling result is that experiments, analysis, and simulations predict dislocation densities that are off by orders of magnitude. Other surprises undoubtedly await us as we explore even higher pressure/strain rate/temperature regimes enabled by the National Ignition Facility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Haynam et al., Appl. Optics, 46 (2007), p. 3276.

    Article  CAS  ADS  Google Scholar 

  2. G.A. Askarion and E.M. Morez, JETP Lett., 16 (1963), p. 1638.

    Google Scholar 

  3. N.C. Andelholm, Appl. Phys. Lett., 16 (1970), p. 113.

    Article  ADS  Google Scholar 

  4. A.H. Clauer et al., Shock Waves and High-Strain-Rate Phenomena in Metals, ed. M.A. Meyers and L.E. Murr (New York: Plenum Press, 1981), pp. 675–702.

    Google Scholar 

  5. R.C. Davidson et al., Frontiers in High Energy Density Physics: The X-Games of Contemporary Science, (Washington, D.C.: The National Academies Press, 2003).

    Google Scholar 

  6. C.S. Smith, Trans. AIME, 212 (1958), p. 574.

    CAS  Google Scholar 

  7. B.A. Remington et al., Met. Mat. Trans., 35A (2004), pp. 2587–2608.

    Article  CAS  Google Scholar 

  8. H.S. Park et al., J. of Phys.: Conf. Sen, 112 (2008), 042024.

    Article  ADS  Google Scholar 

  9. R.F. Smith et al., Phys. Plasmas, 14 (2007), 057105.

    Article  ADS  Google Scholar 

  10. M.N. Jarmakani et al., Acta Mat, 56 (2008), p. 5584.

    Article  CAS  Google Scholar 

  11. M.A. Meyers, Scripta Met, 12 (1978), p. 21.

    Article  CAS  Google Scholar 

  12. E.M. Bringa et al., Nature Materials, 5 (2006), p. 805.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. B.L. Holian and P.S. Lomdahl, Science, 2890 (1998), p. 2085.

    Article  ADS  Google Scholar 

  14. B.Y. Cao, E.M. Bringa, and M.A. Meyers, Met. Mat. Trans., A38 (2007), p. 1073.

    Google Scholar 

  15. LE. Murr, Shock Waves and High-Strain-Rate Phenomena in Metals, ed. M.A. Meyers and L.E. Murr (Newark: Plenum Press, 1981), p. 607.

    Google Scholar 

  16. NX. Bourne, J.C.F. Millet, and G.T. Gray, J. Matls. Sci., 44 (2009), pp. 3319–3343.

    Article  CAS  ADS  Google Scholar 

  17. L.E. Murr and D. Kuhlmann-Wilsdorf, Acta Met, 26 (1978), p. 847.

    Article  CAS  Google Scholar 

  18. M.A. Meyers et al., Dislocations in Solids, ed. J.R Hirth and L.P. Kubin (Maryland Heights, MO: Elsevier, 2009), pp. 94–197.

    Google Scholar 

  19. J.S. Wark et al., Phys. Rev., B40 (1989), p. 5705.

    ADS  Google Scholar 

  20. J.S. Wark et al., SCCM-2007, Vol. 955 (2007), p. 1345.

    CAS  Google Scholar 

  21. J. Hawreliak et al., Phys. Rev. B, 78 (2008), 220101 (R).

    Article  ADS  Google Scholar 

  22. D. Milathianaki and J.M. McNaney et al., Rev. Sci. Instrum., 80 (2009), 093904.

    Article  CAS  PubMed  Google Scholar 

  23. H.S. Park et al., Phys. Rev. Lett., submitted (2009).

  24. H.S. Park et al., Phys. Plasmas, submitted (2009).

  25. B.A. Remington et al., Mat. Sci. Tech., 22 (2006), p. 474.

    Article  CAS  Google Scholar 

  26. E.I. Moses et al., Phys. Plasmas, 16 (2009), 041006.

    Article  ADS  Google Scholar 

  27. Lawrence Livermore National Labs Report, LLNL-AR-412551 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Meyers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, M.A., Remington, B.A., Maddox, B. et al. Laser shocking of materials: Toward the national ignition facility. JOM 62, 24–30 (2010). https://doi.org/10.1007/s11837-010-0006-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0006-x

Keywords

Navigation