Skip to main content
Log in

Beyond hardness: Ceramics and ceramic-based composites for protection

  • Materials for Crashworthiness and Defense
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Because of their lightweight and high hardness, ceramics have been successfully used in protection technologies for over 40 years. The high hardness of a ceramic enables it to break, fragment, and deform impacting projectiles. This paper deals with a number of issues connected to the application of ceramics to ballistic protection, including ceramic hardness, inelastic deformation mechanisms, basic ballistic phenomenology and experimentation, ceramic damage due to ballistic impact, performance/failure maps based upon specific damage/failure mechanisms, and what possible future types of ceramics the suppression of these damage/failure mechanisms guide us to.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. Gooch, Jr., Ceramic Armor Materials by Design (Ceramic Transactions, vol. 134), ed. J.W. McCauley et al. (New York: Wiley & Sons, 2003), pp. 3–21.

    Google Scholar 

  2. P.J. Hazell, Ceramic Armour: Design and Defeat Mechanisms (Canberra, Australia: Argos Press, 2006).

    Google Scholar 

  3. J.W. McCauley et al., editors, Ceramic Armor Materials by Design (Ceramic Transactions, vol. 134) (New York: Wiley & Sons, 2003).

    Google Scholar 

  4. Select Papers on Armor/Anti-Armor Program, Los Alamos Science (Los Alamos, NM: LLNL, Summer 1989), LA-UR-89-1000.

  5. M.K. Aghajanian et al., Ceramic Armor Materials by Design (Ceramic Transactions, vol. 134), ed. J.W. McCauley et al. (New York: Wiley & Sons, 2003), pp. 527–539.

    Google Scholar 

  6. M.L. Wilkens, C.F. Cline, and C.A. Honodel, “Light Armor” (Livermore, CA: Lawrence Radiation Laboratory, University of California, 1969), UCRL-71817.

    Google Scholar 

  7. G.E. Hauver et al., “Interface Defeat of Long-Rod Projectiles by Ceramic Armor,” ARL Technical Report, ARL-TR-3590 (September 2005).

  8. P. Lundberg, R. Renstrom, and B. Lundberg, Int. J. Impact Eng., 24 (2000), pp. 259–275.

    Article  Google Scholar 

  9. P. Lundberg and B. Lundberg, Int. J. Impact Eng., 31 (2004), pp. 781–792.

    Article  Google Scholar 

  10. P. Lundberg, R. Renstrom, and B. Lundberg, Int. J. Impact Eng., 32 (2005), pp. 1842–1856.

    Article  Google Scholar 

  11. K. Thoma, P. Helberg, and E. Strassburger, Proceedings of the 23rd International Symposium on Ballistics, ed. F. Galvez and V. Sanchez-Galvez (2007), pp. 1065–1072; www.mater.upm.es/ISB2007/.

  12. C.E. Anderson et al., “Interface Defeat of Long Rods Impacting Borosilicate Glass Experimental Results,” SwRI Report 18.12544/009 (February 2009).

  13. B.R. Lawn et al., Science, 263 (1994), pp. 1114–1116.

    Article  PubMed  ADS  CAS  Google Scholar 

  14. B.R. Lawn, J. Am. Ceram. Soc, 81(8) (1998), pp. 1977–1994.

    Article  CAS  Google Scholar 

  15. J.C. LaSalvia and J.W. McCauley, Int. J. Appl. Ceram. Tech., in press (2010).

  16. J. Sternberg, J. Appl. Phys., 65(9) (1989), pp. 3417–3424.

    Article  ADS  CAS  Google Scholar 

  17. J. Lankford, Jr., Int. J. Appl. Ceram. Tech., 1(3) (2004), pp. 205–210.

    CAS  Google Scholar 

  18. ASTM C1327 “Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics,” 2009 Annual Book of ASTM Standards, Vol. 15.01 (West Conshohocken, PA: ASTM, 2009).

    Google Scholar 

  19. ASTM C1326 “Standard Test Method for Knoop Indentation Hardness of Advanced Ceramics” 2009 Annual Book of ASTM Standards, Vol. 15.01 (West Conshohocken, PA: ASTM, 2009).

    Google Scholar 

  20. P.M. Sargent, “Microindentation Techniques in Materials Science and Engineering,” ASTM STP 889, ed. P.J. Blau and B.R. Lawn (West Conshohocken, PA: American Society for Testing and Materials, 1986), pp. 160–174.

    Google Scholar 

  21. H. Li, and R.C. Bradt, J. Hard Mat, 3(3–4) (1992), pp. 403–419.

    CAS  Google Scholar 

  22. G.D. Quinn, P. Green, and K. Xu, J. Am. Ceram. SOC., 86(3) (2003), pp. 441–448.

    Article  CAS  Google Scholar 

  23. J.J. Swab, Int. J. Appl. Ceram. Tech., 1(3) (2004), pp. 219–225.

    CAS  Google Scholar 

  24. M.J. Normandia and W.A. Gooch, Ceramic Armor Materials by Design (Ceramic Transactions, vol. 134), ed. J.W. McCauley et al. (New York: Wiley & Sons, 2003), pp. 113–138.

    Google Scholar 

  25. M.A. Adams, Ceramic Armor Materials by Design (CeramicTransactions, vol. 134), ed. J.W. McCauley et al. (New York: Wiley & Sons, 2003), pp. 139–150.

    Google Scholar 

  26. D.L. Orphal and R.R. Franzen, Int. J. Impact Eng., 19 (1997), pp. 1–13.

    Article  Google Scholar 

  27. D.L. Orphal et al., Int. J. Impact Eng., 19 (1997), pp. 15–29.

    Article  Google Scholar 

  28. W.A. Gooch et al., J. de Physique IV, 10(9) (2000), pp. 583–588.

    Google Scholar 

  29. T. Behner et al., Int. J. Impact Eng., 33 (2006), pp. 68–79.

    Article  Google Scholar 

  30. J.C. LaSalvia et al., Cer. Eng. Sci. Proc., 29(6) (2008), pp. 85–94.

    Google Scholar 

  31. Th. Behner et al., Int. J. Impact Eng., 35 (2008), pp. 447–456.

    Article  Google Scholar 

  32. J.C. LaSalvia et al., Cer. Eng. Sci. Proa, 30 (2009), pp. 45–55.

    CAS  Google Scholar 

  33. N.K. Bourne, Proc. Royal Soc. A, 458 (2024) (2002), pp. 1999–2006.

    Article  ADS  CAS  Google Scholar 

  34. T.J. Vogler, W.D. Reinhart, and L.C. Chhabildas, J. Appl. Phys., 95(8) (2004), pp. 4173–4183.

    Article  ADS  CAS  Google Scholar 

  35. M. Cain and R. Worrell, Appl. Organometallic Chem., 15(5) (2001), pp. 321–330.

    Article  CAS  Google Scholar 

  36. A. Mukhopadhyay and B. Basu, Int Mat. Rev., 52(5) (2007), pp. 257–288.

    Article  MathSciNet  CAS  Google Scholar 

  37. D.W. Susnitzky and C. Barry Carter, J. Am. Ceram. Soc, 73(8) (1990), pp. 2485–2493.

    Article  CAS  Google Scholar 

  38. H.J. Kleebe, J. Ceram. Soc. Japan, 105(6) (1997), pp. 453–475.

    CAS  Google Scholar 

  39. G. Pezzotti et al,, J. Am. Ceram. Soc., 83(10) (2000), pp. 2549–2555.

    CAS  Google Scholar 

  40. X.F. Zhang, M.E. Sixta, and L.C. De Jonghe, J. Am. Ceram. Soc, 83(11) (2000), pp. 2813–2820.

    Article  CAS  Google Scholar 

  41. A. Subramaniam et al., Mat. Sci. Eng. A, 422 (2006), pp. 3–18.

    Article  CAS  Google Scholar 

  42. J. Rodel, J. Euro Cer. Soc, 10(3) (1992), pp. 143–150.

    Article  Google Scholar 

  43. N.P. Padture, J. Am. Ceram. Soc, 77(2) (1994), pp. 519–523.

    Article  CAS  Google Scholar 

  44. K-S. Cho et al., J. Mat. Sci., 33(1) (1998), pp. 211–214.

    Article  CAS  Google Scholar 

  45. W.J. Clegg, Nature, 347 (1990), pp. 455–457.

    Article  ADS  CAS  Google Scholar 

  46. W.J. Clegg, Ada Met. Mat, 40(11) (1992), pp. 3085–3093.

    Article  CAS  Google Scholar 

  47. M.P. Rao et al. Science, 286(5437) (1999), pp. 102–105.

    Article  PubMed  CAS  Google Scholar 

  48. A.J. Phillipps, W.J. Clegg, and T.W. Clyne, Comp., 25(7) (1994), pp. 524–533.

    Article  Google Scholar 

  49. H.M. Chan, Annu. Rev. Mater. Sci., 27 (1997), pp. 249–282.

    Article  CAS  ADS  Google Scholar 

  50. F.F. Lange et al. Ceramic Armor Materials by Design (Ceramic Transactions, vol, 134), ed. J.W. McCauley et al. (New York: Wiley & Sons, 2003), pp. 499–509.

    Google Scholar 

  51. M. Lugovy et al, Comp. Sci. Tech., 62 (2002), pp. 819–830.

    Article  Google Scholar 

  52. I.A. Gee et al., Adv. Appl. Ceram., 104(3) (2004), pp. 103–109.

    Article  CAS  Google Scholar 

  53. S. Bueno and C. Baudin, Comp. A Appl. Sci. Manuf, 40(2) (2009), pp. 137–143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. LaSalvia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaSalvia, J.C., Campbell, J., Swab, J.J. et al. Beyond hardness: Ceramics and ceramic-based composites for protection. JOM 62, 16–23 (2010). https://doi.org/10.1007/s11837-010-0004-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0004-z

Keywords

Navigation