Skip to main content
Log in

Tensile and compressive microspecimen testing of bulk nanoporous gold

  • Nanomechanical Testing
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Nanoporous gold (np-Au) is a macroscopically brittle material, which poses difficulties for tensile testing of bulk specimens. By combining a fabrication approach that minimizes cracking in bulk np-Au and a microspecimen test technique that permits small testing volumes, both tension and compression tests were performed on sub-millimeter gage thicknesses of np-Au. Compressive strength was higher than tensile strength, as would be expected for a brittle material, but all strength values were significantly lower than literature values for nanoindentation testing. Measured elastic modulus was nearly the same in tension and compression, and was much lower than Gibson-Ash-by scaling relations would predict for porous gold with this density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ding, M. Chen, and J. Eriebacher, Journal of the American Chemical Society, 126 (2004), p, 6876.

    Article  CAS  PubMed  Google Scholar 

  2. J. Eriebacher et al., Nature, 410 (2001), p. 450.

    Article  ADS  Google Scholar 

  3. J.-E Huang and I.W. Sun, Advanced Functional Maferiafe, 15 (2005), p. 989.

    Article  CAS  Google Scholar 

  4. S.O. Kucheyev et al., Applied Physics Letters, 89 (2006), p. 53102.

    Article  ADS  Google Scholar 

  5. M.B. Cortie et al., Sensors and Actuators B (Chemical), 123 (2007), p. 262.

    Article  Google Scholar 

  6. F. Yu et al., Analytical Chemistry, 78 (2006), p. 7346.

    Article  CAS  PubMed  Google Scholar 

  7. R. Li and K. Sieradzki, Physical Review Letters, 68 (1992), p. 1168.

    Article  CAS  PubMed  ADS  Google Scholar 

  8. S. Parida et al., Physical Review Letters, 97 (2006), p. 035504.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Y Sun and T.J. Balk, Scripta Materialia, 58 (2008), p. 727.

    Article  CAS  Google Scholar 

  10. J. Biener et al., J.ApplPhys, 97 (2005), p. 024301.

    Article  ADS  Google Scholar 

  11. J. Biener et al., Nano Letters, 6 (2006), p. 2379

    Article  CAS  PubMed  ADS  Google Scholar 

  12. C.A. Volkert et al., Applied Physics Letters, 89 (2006), p. 61920.

    Article  Google Scholar 

  13. H.J. Jin et al., Acta Materialia, 57 (2009), p. 2665.

    Article  CAS  Google Scholar 

  14. L.J. Gibson and M.F. Ashby, Cellular Solids — Structure and Properties (New York, NY Cambridge University Press, 1997).

  15. K.J. Hemker and W.N. Sharpe, Annual Review of Materials Research, 37 (2007), p. 93.

    Article  CAS  Google Scholar 

  16. D.S. Gianola et al., Acta Materialia, 54 (2006), p. 2253.

    Article  CAS  Google Scholar 

  17. W.H. Peters and W.F. Ranson, Optical Engineering, 21 (1982), p. 427.

    Google Scholar 

  18. T.C. Chu et al., Experimental Mechanics, 25 (1985), p. 232.

    Article  Google Scholar 

  19. H.A. Bruck et al., Experimental Mechanics, 29 (1989), p. 261.

    Article  Google Scholar 

  20. C. Eberl, D.S. Gianola, and R. Thompson, Digital Image Correlation and Tracking (Mathworks file exchange server, File ID: 12413, 2006).

  21. J. Biener, A.M. Hodge, and A.V. Hamza, Applied Physics Letters, 87 (2005), p. 121908.

    Article  ADS  Google Scholar 

  22. Y Sun et al., JOM, 59(9) (2007), p. 54.

    Article  CAS  Google Scholar 

  23. A.M. Hodge et al., Ada Materialia, 55 (2007), p. 1343.

    Article  CAS  Google Scholar 

  24. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (New York: John Wiley & Sons, Inc, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. John Balk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balk, T.J., Eberl, C., Sun, Y. et al. Tensile and compressive microspecimen testing of bulk nanoporous gold. JOM 61, 26–31 (2009). https://doi.org/10.1007/s11837-009-0176-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0176-6

Keywords

Navigation