Skip to main content

Dissolution of bioactive glasses: The effects of crystallinity coupled with stress

Abstract

Fixing the chemical composition of bioactive ceramic glass does not dictate biological response. Processing history can alter the microstructure, phase composition, degree of crystallinity, and residual stress—all of which can contribute to mechanical performance and bioactive response. This paper discusses effects of thermal and mechanical processing performed on bioactive glass 45S5 with regard to the micro-structural changes that occur during in vitro immersion, and how such changes can be related to bioactivity with respect to implant materials. The underlying theme is the relationship between mechanical properties, stress, microstructure, and bioactivity, and how to achieve optimization.

This is a preview of subscription content, access via your institution.

References

  1. L.L. Hench, Surface-Chemistry of Bioglass-Ceramic Implant Materials (Abstracts of Papers of the American Chemical Society), 173 (March 20, 1977), p. 10.

    Google Scholar 

  2. L.L. Hench et al., J. Biomedical Materials Research, 11(2) (1977), pp. 267–282.

    Article  CAS  Google Scholar 

  3. L.L. Hench et al., American Ceramic Society Bulletin, 52(4) (1973), pp. 432–432.

    Google Scholar 

  4. V. Sergo, O. Sbaizero, and D.R. Clarke, Biomaterials, 18(6) (1997), pp. 477–482.

    Article  PubMed  CAS  Google Scholar 

  5. D. Li, F. Yang, and J. Nychka, Engineering Fracture Mechanics, 75(17) (2008), pp. 4898–4908.

    Article  Google Scholar 

  6. J.A. Nychka and D. Li, Advanced Materials Research, 47–50 (2008), pp. 1302–1306.

    Article  Google Scholar 

  7. J.A. Nychka, D. Li, and B. Alexander, J. Mechanical Behavior of Biomedical Materials, 1 (2008), pp. 243–251.

    Article  Google Scholar 

  8. R.L. Reis, F.J. Monteiro, and G.W. Hastings, J. Materials Science-Materials in Medicine, 5(6–7) (1994), pp. 457–462.

    Article  Google Scholar 

  9. D.M. Sanders and L.L. Hench, American Ceramic Society Bulletin, 51(4) (1972), p. 372.

    Google Scholar 

  10. D.M. Sanders, W.B. Person, and L.L. Hench, Applied Spectroscopy, 26(5) (1972), p. 530.

    Article  ADS  CAS  Google Scholar 

  11. A.E. Clark and L.L. Hench, American Ceramic Society Bulletin, 52(4) (1973), p. 379.

    Google Scholar 

  12. L.L. Hench et al., American Ceramic Society Bulletin, 52(9) (1973), p. 704.

    Google Scholar 

  13. L.L. Hench et al., American Ceramic Society Bulletin, 52(4) (1973), p. 380.

    Google Scholar 

  14. D.M. Sanders and L.L. Hench, J. American Ceramic Society, 56(7) (1973), p. 373.

    Article  CAS  Google Scholar 

  15. D.M. Sanders and L.L. Hench, American Ceramic Society Bulletin, 52(9) (1973), p. 662.

    CAS  Google Scholar 

  16. D.M. Sanders and L.L. Hench, American Ceramic Society Bulletin, 52(9) (1973), p. 666.

    CAS  Google Scholar 

  17. M.F. Dilmore and L.L. Hench, American Ceramic Society Bulletin, 53(4) (1974), p. 349.

    Google Scholar 

  18. C.G. Pantano, A.E. Clark, and L.L. Hench, J. American Ceramic Society, 57(9) (1974), pp. 412–413.

    Article  CAS  Google Scholar 

  19. W.P. Cao and L.L. Hench, Ceramics International, 22(6) (1996), pp. 493–507.

    Article  CAS  Google Scholar 

  20. L.L. Hench, J. American Ceramic Society, 81(7) (1998), pp. 1705–1728.

    Article  CAS  Google Scholar 

  21. L.L. Hench, Bioceramics, 293 (1999), pp. 37–63.

    CAS  Google Scholar 

  22. L.L. Hench, American Ceramic Society Bulletin, 84(9) (2005), pp. 18–21.

    CAS  Google Scholar 

  23. L.L. Hench, J. Materials in Medicine, 17 (2006), pp. 967–978.

    Article  CAS  Google Scholar 

  24. L.L. Hench, Bioceramics, Vol 16, vol. 254–2 (2004), pp. 3–6.

    ADS  Google Scholar 

  25. L.L. Hench et al., Thermec’2003, Pts. 1–5. Ed. T. Candra et al. (Zurich, Switzerland: TransTech Publishers, 2003), pp. 179–184.

    Google Scholar 

  26. L.L. Hench et al., J. Inorganic Materials, 17(5) (2002), pp. 897–909.

    CAS  Google Scholar 

  27. D.L. Wheeler et al., J. Biomedical Materials Research, 41(4) (1998), pp. 527–533.

    Article  CAS  Google Scholar 

  28. P. Sepulveda, J.R. Jones, and L.L. Hench, Bioceramics, 192–1 (2000), pp. 629–633.

    Google Scholar 

  29. M. Vogel et al., Biomaterials, 22(4) (2001), pp. 357–362.

    Article  PubMed  CAS  Google Scholar 

  30. B.D. Leatherman and J.L. Dornhoffer, Otology & Neurotology, 23(5) (2002), pp. 657–660.

    Article  Google Scholar 

  31. M.G. Cerruti, D. Greenspan, and K. Powers, Biomaterials, 26(24) (2005), pp. 4903–4911.

    Article  PubMed  CAS  Google Scholar 

  32. M. Vollenweider et al., Acta Biomaterialia, 3(6) (2007), pp. 936–943.

    Article  PubMed  CAS  Google Scholar 

  33. A.R. Boccaccini et al., J. Materials Science-Materials in Medicine, 14(5) (2003), pp. 443–450.

    Article  CAS  Google Scholar 

  34. M.A. De Diego, N.J. Coleman, and L.L. Hench, J. Biomedical Materials Research, 53(3) (2000), pp. 199–203.

    Article  Google Scholar 

  35. P. Ducheyne and L.L. Hench, J. Materials Science, 17(2) (1982), pp. 595–606.

    Article  ADS  CAS  Google Scholar 

  36. E. Barth, H. Ronningen, and L.F. Solheim, Acta Orthopaedica Scandinavica, 57(3) (1986), p. 272.

    Google Scholar 

  37. M. Declercq, E. Schepers, and P. Ducheyne, J. Dental Research, 65(4) (1986), p. 540.

    Google Scholar 

  38. E. Schepers, M. Declercq, and P. Ducheyne, J. Dental Research, 65(4) (1986), p. 544.

    Google Scholar 

  39. L. Housefie and L.L. Hench, American Ceramic Society Bulletin, 53(4) (1974), p. 384.

    Google Scholar 

  40. E.M. Erbe, Bioactive Load Bearing Bone Bonding Compositions, International Patent No. WO 1997/020521; European Patent No. 0 874 601 B1. (2007).

  41. C.C. Lin, L.C. Huang, and P. Shen, J. Non-Crystalline Solids, 351 (2005), pp. 3195–3203.

    Article  ADS  CAS  Google Scholar 

  42. P. Buscemi et al., American Ceramic Society Bulletin, 53(8) (1974), p. 611.

    Google Scholar 

  43. D.C. Greenspan and L.L. Hench, J. Biomedical Materials Research, 10(4) (1976), pp. 503–509.

    Article  CAS  Google Scholar 

  44. G.A. Fuchs, Biomedizinische Technik, 27(1–2) (1982), pp. 24–29.

    PubMed  CAS  Google Scholar 

  45. A.S. Vlasov and O.V. Ludanova, Glass and Ceramics, 52(3–4) (1995), pp. 99–101.

    Article  Google Scholar 

  46. T. Kitsugi et al., J. Biomedical Materials Research, 30(2) (1996), pp. 261–269.

    Article  CAS  Google Scholar 

  47. A. Lopez-Sastre et al., International Orthopaedics, 22(6) (1998), pp. 380–383.

    Article  PubMed  CAS  Google Scholar 

  48. W.M. Gu et al., J. Inorganic Materials, 14(4) (1999), pp. 640–644.

    CAS  Google Scholar 

  49. M. Hamadouche et al., Bioceramics, 192–1 (2000), pp. 413–416.

    Google Scholar 

  50. F. Judas et al., Faseb Journal, 14(4) (2000), p. A446.

    Google Scholar 

  51. Y.F. Zhao, C.Z. Chen, and D.G. Wang, Surface Review and Letters, 12(4) (2005), pp. 505–513.

    Article  ADS  CAS  Google Scholar 

  52. J.M. Gomez-Vega et al., Biomaterials, 21(2) (2000), pp. 105–111.

    Article  PubMed  CAS  Google Scholar 

  53. C. Yurong and Z. Lian, Materials Chemistry and Physics, 94(2–3) (2005), pp. 283–287.

    Article  CAS  Google Scholar 

  54. L.L. Hench and H.A. Paschall, J. Biomedical Materials Research, 7(3) (1973), pp. 25–42.

    Article  CAS  Google Scholar 

  55. H.A. ElBatal et al., Materials Chemistry and Physics, 80(3) (2003), pp. 599–609.

    Article  CAS  Google Scholar 

  56. L. Lefebvre et al., Acta Materialia, 55 (2007), pp. 3305–3313.

    Article  CAS  Google Scholar 

  57. H. Ohsato, I. Maki, and Y. Takeuchi, Acta Crystallographica Section C-Crystal Structure Communications, 41(1985), pp. 1575–1577.

    Article  Google Scholar 

  58. T.K. Greenlee, Jr. et al., J. Biomedical Materials Research, 6(3) (1972), pp. 235–244.

    Article  CAS  Google Scholar 

  59. O. Peitl, G.P. La Torre, and L.L. Hench, J. Biomedical Materials Research, 30(4) (1996), pp. 509–514.

    Article  Google Scholar 

  60. A. El-Ghannam, E. Hamazawy, and A. Yehia, J. Biomedical Materials Research, 55(3) (2001), pp. 387–395.

    Article  CAS  Google Scholar 

  61. L. Froberg, L. Hupa, and M. Hupa, J. European Ceramic Society, 29 (2009), pp. 7–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Nychka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nychka, J.A., Mazur, S.L.R., Kashyap, S. et al. Dissolution of bioactive glasses: The effects of crystallinity coupled with stress. JOM 61, 45–51 (2009). https://doi.org/10.1007/s11837-009-0132-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0132-5

Keywords