Skip to main content

Magnesium as a biodegradable and bioabsorbable material for medical implants

Abstract

For many years, stainless steel, cobalt-chromium, and titanium alloys have been the primary biomaterials used for load-bearing applications. However, as the need for structural materials in temporary implant applications has grown, materials that provide short-term structural support and can be reabsorbed into the body after healing are being sought. Since traditional metallic biomaterials are typically biocompatible but not biodegradable, the potential for magnesium-based alloys in biomedical applications has gained more interest. This paper summarizes the history and current status of magnesium as a bioabsorbable implant material. Also discussed is the development of a magnesium-zinc-calcium alloy that demonstrates promising degradation behavior.

This is a preview of subscription content, access via your institution.

References

  1. J.B. Park and Y.K. Kim, Biomaterials: Principles and Applications, ed. J.B. Park and J.D. Bronzino (Boca Raton: CRC Press, 2003), pp. 1–20.

    Google Scholar 

  2. H. Hamid and J. Coltart, McGill Journal of Medicine, 10(2) (2007), pp. 105–111.

    PubMed  Google Scholar 

  3. P. Peeters et al., Journal of Endovascular Specialists, 12 (2005), pp. 1–5.

    Google Scholar 

  4. J. Heller, R.V. Sparer, and G. Zentner, Biodegradable Polymers as Drug Delivery Systems, ed. M. Chasin and R.S. Langer (New York: M. Dekker, 1990), pp. 121–161.

    Google Scholar 

  5. O.M. Bostman, Journal of Bone and Joint Surgery, 73B(4) (1991), p. 682.

    Google Scholar 

  6. J. Levesque et al., Advanced Materials & Processes, 162(9) (2004), pp. 45–48.

    CAS  Google Scholar 

  7. J. Vormann, Mol Aspects Med, 24(1–3) (2003), pp. 27–37.

    PubMed  Article  CAS  Google Scholar 

  8. R.C. Zeng et al., Advanced Engineering Materials, 10(8) (2008), pp. B3–B14.

    Article  ADS  CAS  Google Scholar 

  9. D. Upadhyay et al., Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing, 432(1–2) (2006), pp. 1–11.

    Google Scholar 

  10. P.A. Dearnley, Surface & Coatings Technology, 198(1–3) (2005), pp. 483–490.

    Article  CAS  Google Scholar 

  11. B. Heublein et al., Heart, 89 (2003), pp. 651–656.

    PubMed  Article  CAS  Google Scholar 

  12. D. MacLeod and J. MacLeod, British Journal of Anaesthesia, 83(6) (1999), pp. 972–973.

    PubMed  CAS  Google Scholar 

  13. R.J. Elin, Clinical Chemistry, 33(11) (1987), pp. 1965–1970.

    PubMed  CAS  Google Scholar 

  14. A. Lambotte, Bull. Mem. Soc. Nat. Chir., 28 (1932), pp. 1325–1334.

    Google Scholar 

  15. M.P. Staiger et al., Biomaterials, 27(9) (2006), pp. 1728–1734.

    PubMed  Article  CAS  Google Scholar 

  16. V.V. Troitskii and D.N. Tsitrin, Khirurgiia, 8 (1944), pp. 41–44.

    Google Scholar 

  17. E.D. McBride, Journal of the American Medical Association, 111 (1938), pp. 2464–2466.

    CAS  Google Scholar 

  18. F. Witte et al., Biomaterials, 26(17) (2005), pp. 3557–3563.

    PubMed  Article  CAS  Google Scholar 

  19. H. Zreiqat et al., Journal of Biomedical Materials Research, 62(2) (2002), pp. 175–184.

    PubMed  Article  CAS  Google Scholar 

  20. L. Li, J. Gao, and Y. Wang, Surface and Coatings Technology, 185(1) (2004), pp. 92–98.

    Article  CAS  MathSciNet  Google Scholar 

  21. N.E.L. Saris et al., Clinica Chimica Acta, 294(1–2) (2000), pp. 1–26.

    Article  CAS  Google Scholar 

  22. G.-L. Song and S.-Z. Song, Acta Physico-Chimica, 22(10) (2006), pp. 1222–1226.

    CAS  Google Scholar 

  23. G. Song, Corrosion Science, 49(4) (2007), pp. 1696–1701.

    Article  ADS  CAS  Google Scholar 

  24. C.D. Reyes, T.A. Petrie, and A.J. Garcia, Journal of Cellular Physiology, 217(2) (2008), pp. 450–458.

    PubMed  Article  CAS  Google Scholar 

  25. T.A. Petrie et al., Journal of Cellular and Molecular Medicine (August 2008), doi 10.1111/j.1582-4934.2008.00476.x

  26. M.O. Platt et al., Journal of Cellular Physiology (18 June 2009), doi: 10.1002/jcp.21854.

  27. R.M. Salasznyk et al., Journal of Biomedicine & Biotechnology, 2004(1) (2004), pp. 24–34.

    Article  Google Scholar 

  28. D.Y. Li et al., Nature, 393(6682) (1998), pp. 276–280.

    PubMed  Article  ADS  CAS  Google Scholar 

  29. B.A. Shaw, ASM Handbook—Corrosion: Fundamentals, Testing, and Protection (Materials Park, OH: ASM International, 2003), pp. 692–696.

    Google Scholar 

  30. C.J. Smithells, E.A. Brandes, and G.B. Brook, Smithells’ Metals Reference Book. 7th ed. (London: Butterworths, 1992), 1 v. (various pages).

    Google Scholar 

  31. C.S. Roberts, Magnesium and its Alloys, Wiley Series on the Science and Technology of Materials (New York: Wiley, 1960).

    Google Scholar 

  32. T.D. Luckey and B. Venugopal, Metal Toxicity in Mammals (New York: Plenum Press, 1977).

    Google Scholar 

  33. M.B. Kannan and R.K.S. Raman, Biomaterials, 29(15) (2008), pp. 2306–2314.

    PubMed  Article  CAS  Google Scholar 

  34. Y.C. Xin et al., Journal of Materials Research, 22(7) (2007), pp. 2004–2011.

    Article  ADS  CAS  Google Scholar 

  35. G.L. Song and A. Atrens, Advanced Engineering Materials, 1(1) (1999), pp. 11–33.

    Article  CAS  Google Scholar 

  36. I. Engelberg and J. Kohn, Biomaterials, 12(3) (1991), pp. 292–304.

    PubMed  Article  CAS  Google Scholar 

  37. J. Black, Orthopaedic Biomaterials in Research and Practice (New York: Churchill Livingstone, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele V. Manuel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brar, H.S., Platt, M.O., Sarntinoranont, M. et al. Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM 61, 31–34 (2009). https://doi.org/10.1007/s11837-009-0129-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0129-0

Keywords

  • Simulated Body Fluid
  • UHMWPE
  • Corrosion Layer
  • Lower Degradation Rate
  • Advance Engineer Material