JOM

, Volume 61, Issue 6, pp 12–16 | Cite as

Atomic layer deposition of TiO2 thin films on nanoporous alumina templates: Medical applications

  • Roger J. Narayan
  • Nancy A. Monteiro-Riviere
  • Robin L. Brigmon
  • Michael J. Pellin
  • Jeffrey W. Elam
Thin Films and Interfaces Overview

Abstract

Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of a nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Neither the 20 nm nor the 100 nm TiO2-coated nanoporous alumina membranes exhibited statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for “smart” drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O.V. Salata, J. Nanobiotechnology, 2 (2004), p. 3.PubMedCrossRefGoogle Scholar
  2. 2.
    G. Stylios et al., Injury, 36 (2005), pp. S6–S13.PubMedCrossRefGoogle Scholar
  3. 3.
    N. Wisniewski et al., Colloids and Surfaces B: Biointerfaces, 18 (2000), pp. 197–219.CrossRefGoogle Scholar
  4. 4.
    S.H.C. Anderson et al., Physica Status Solidi A: Applied Research, 197 (2003), pp. 331–335.CrossRefADSGoogle Scholar
  5. 5.
    L.T. Canham et al., Thin Solid Films, 297 (1997), pp. 304–307.CrossRefADSGoogle Scholar
  6. 6.
    M.P. Stewart et al., Advanced Materials, 12 (2000), pp. 859–869.CrossRefGoogle Scholar
  7. 7.
    H. Matsuda et al., Science, 268 (1995), pp. 1466–1468.CrossRefADSGoogle Scholar
  8. 8.
    M.L. Hegde et al., J. Molecular Neuroscience, 22 (2003), pp. 19–31.CrossRefGoogle Scholar
  9. 9.
    M.A. Cameron et al., Langmuir, 16 (2000), pp. 7435–7444.CrossRefGoogle Scholar
  10. 10.
    V. Faust et al., Key Engineering Materials, 206 (2002), pp. 1547–1550.CrossRefGoogle Scholar
  11. 11.
    A. Canabarro et al., J. Biomedical Materials Research, 87A (2008), pp. 588–597.CrossRefGoogle Scholar
  12. 12.
    B.D. Ratner, J. Biomedical Materials Research, 27 (1993), pp. 837–850.CrossRefGoogle Scholar
  13. 13.
    D. Stoeckel et al., European Radiology, 14 (2004), pp. 292–301.PubMedCrossRefGoogle Scholar
  14. 14.
    A. Canabarro et al., J. Biomedical Materials Research, 87A (2008), pp. 588–597.CrossRefGoogle Scholar
  15. 15.
    S. Kipke et al., Advanced Functional Materials, 14 (2004), pp. 1184–1188.CrossRefGoogle Scholar
  16. 16.
    R.L. Puurunen et al., J. Applied Physics, 96 (2004), pp. 7686–7695.CrossRefADSGoogle Scholar
  17. 17.
    H.M. Alsyouri et al., Langmuir, 19 (2003), pp. 7307–7314.CrossRefGoogle Scholar
  18. 18.
    T. Mosmann, J. Immunological Methods, 65 (1983), pp. 55–63.CrossRefGoogle Scholar
  19. 19.
    N.A. Monteiro-Riviere et al., Carbon, 44 (2006), pp. 1070–1078.CrossRefGoogle Scholar
  20. 20.
    N.A. Monteiro-Riviere et al., Toxicology and Applied Pharmacology, 234 (2009), pp. 222–235.PubMedCrossRefGoogle Scholar
  21. 21.
    M.S. Wong et al., Applied and Environmental Microbiology, 72 (2006), pp. 6111–6116.PubMedCrossRefGoogle Scholar
  22. 22.
    P.C. Maness et al., Applied and Environmental Microbiology, 65 (1999), pp. 4094–4098.PubMedGoogle Scholar
  23. 23.
    D. Losic et al., Nanotechnology, 19 (2008), p. 24570.CrossRefGoogle Scholar
  24. 24.
    Y.Z. Yang et al., Vacuum, 83 (2008), pp. 569–574.CrossRefGoogle Scholar
  25. 25.
    S.R. Chae et al., J. Membrane Science, 329 (2009), pp. 68–74.CrossRefGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • Roger J. Narayan
    • 1
  • Nancy A. Monteiro-Riviere
    • 1
    • 2
  • Robin L. Brigmon
    • 3
  • Michael J. Pellin
    • 4
  • Jeffrey W. Elam
    • 5
  1. 1.Joint Department of Biomedical EngineeringUniversity of North Carolina and North Carolina State UniversityRaleighUSA
  2. 2.Center for Chemical Toxicology Research and PharmacokineticsNorth Carolina State UniversityRaleighUSA
  3. 3.Savannah River National LaboratoryAikenUSA
  4. 4.Materials Science DivisionArgonne National LaboratoryArgonneUSA
  5. 5.Energy Systems DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations