Skip to main content
Log in

Informatics for chemical crystallography

  • Materials Informatics
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A fundamental question in inorganic crystallography is the relationship between chemical stoichiometry and crystal structure. The relationship between specific compounds and specific crystal structures is usually developed heuristically by surveying crystallographic data of known compounds. This process of structure-chemistry association has laid the historical foundation for identifying crystal structure prototypes and structural classifications. This paper demonstrates how informatics can quantitatively accelerate the discovery of structure—chemistry relationships but also be used as the foundation for developing structure—chemistry-property relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.G. Pettifor, Structure Mapping Intermetallic Compounds: Principles and Practice, ed. J.H. Westbrook and R.L. Fleischer, Vol. 1 (Chichester, U.K.: John Wiley & Sons, 1995), pp. 419–438.

    Google Scholar 

  2. E. Mooser and W.B. Pearson, “On the Crystal Chemistry of Normal Valence Compounds,” Acta Cryst., 12 (1959), pp. 1015–1022.

    Article  CAS  Google Scholar 

  3. W. Andreoni et al., “Hard-core Pseudopotentials and Structural Maps of Solids,” Phys. Rev. B, 20(12) (1979), p. 4814.

    Article  ADS  CAS  Google Scholar 

  4. J.C. Phillips and J.A. Van Vechten, “Dielectric Classification of Crystal Structures, Ionization Potentials, and Band Structures,” Phys. Rev. Lett., 22(14) (1969), pp. 705–708.

    Article  ADS  CAS  Google Scholar 

  5. K. Söerberg et al., “Crystal Structures and Phase Stability in Pseudobinary CaAl2−x Znx,” J. Solid State Chem., 179(8) (2006), pp. 2690–2697. Press, 1981), pp. 73–135.

    Article  ADS  CAS  Google Scholar 

  6. D. Pettifor, Bonding and Structure of Molecules and Solids (Oxford, U.K.: Oxford University Press, 1995).

    Google Scholar 

  7. C. Suh and K. Rajan, “Establishing Measurement Techniques for Mapping Structure-Property Relationships,” Mat. Sci. Tech. (accepted).

  8. L. Eriksson et al., Multi- and Megavariate Data Analysis—Principles and Applications (Ume Sweden: Umetrics Academy, 1999).

    Google Scholar 

  9. R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, 5th Ed. (Upper Saddle River, NY: Prentice Hall, 2002).

    Google Scholar 

  10. K.E. Sickafus, J.M. Wills, and N.W. Grimes, “Structure of Spinel,” J. Am. Ceram. Soc., 82(12) (1999), pp. 3279–3792.

    CAS  Google Scholar 

  11. W.Y. Ching et al., “Theoretical Prediction of the Structure and Properties of Cubic Spinel Nitrides,” J. Am. Ceram. Soc., 85(1) (2002), pp. 75–80.

    Article  CAS  Google Scholar 

  12. P. Villars, “A Three-Dimensional Structure Stability Diagram for 998 Binary AB Intermetallic Compounds,” J. Less-Common Met., 92 (1983), pp. 215–238.

    Article  CAS  Google Scholar 

  13. J.K. Burdett, G.D. Price, and S.L. Price, “Factors Influencing Solid-State Structure-An Analysis Using Pseudopotential Radii Structural Maps,” Phys. Rev. B, 24(6) (1981), pp. 2903–2912.

    Article  ADS  CAS  Google Scholar 

  14. J.K. Burdett, G.D. Price, and S.L. Price, “Role of the Crystal-Field Theory in Determining the Structures of Spinels,” A. Am. Chem. Soc., 104 (1982), pp. 92–95.

    Article  CAS  Google Scholar 

  15. H. Haeuseler, “Structure Field Maps for Sulfides of Composition AB2X4,” J. Solid. State. Chem., 86 (1990), pp. 275–278.

    Article  ADS  CAS  Google Scholar 

  16. A. Zunger, “A Pseudopotential Viewpoint of the Electronic and Structural Properties of Crystals,” Structure and Bonding in Crystals, Vol. I, ed. M. O’Keeffe and A. Navrotsky (New York: Academic Press, 1981), pp. 73–135.

    Google Scholar 

  17. Y. Harada et al., “New Crystal Structure Maps for Intermetallic Compounds,” J. Phys.: Condens. Matter, 9 (1997), pp. 8011–8030.

    Article  ADS  CAS  Google Scholar 

  18. P. Villars and J.C. Phillips, “Quantum Structural Diagrams and High-Tc Superconductivity,” Phys. Rev. B, 37(4) (1988), pp. 2345–2348.

    Article  ADS  CAS  Google Scholar 

  19. C. Suh and K. Rajan, “Virtual Screening and QSAR Formulations for Crystal Chemistry,” QSAR & Comb. Sci., 24(1) (2005), pp. 114–119.

    Article  CAS  Google Scholar 

  20. R.J. Hill, J.R. Craig, and G.V. Gibbs, “Systematics of the Spinel Structure Type,” Phys. Chem. Miner., 4 (1979), pp. 317–339.

    Article  ADS  CAS  Google Scholar 

  21. R.D. Tobias, “An Introduction to Partial Least Squares Regression” (Cary, NC: SAS Institute Inc., 2007), http://support.sas.com/rnd/app/papers/pls.pdf.

    Google Scholar 

  22. V. Kholodovych et al., “Accurate Predictions of Cellular Response using QSPR: A Feasibility Test of Rational Design of Polymeric Biomaterials,” Polymer, 45(22) (2004), pp. 7367–7379.

    Article  CAS  Google Scholar 

  23. M.D. Segall et al., “Population Analysis of Plane- Wave Electronic Structure Calculations of Bulk Materials,” Phys. Rev. B, 54(23) (1996), pp. 16317–16320.

    Article  ADS  CAS  Google Scholar 

  24. R.M. Thompson and R.T. Downs, “Quantifying Distortion from Ideal Closest-Packing in a Crystal Structure with Analysis and Application,” Acta Crystallographica Section B, 57(2) (2001), pp. 119–127.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Rajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, C., Rajan, K. Informatics for chemical crystallography. JOM 61, 48–53 (2009). https://doi.org/10.1007/s11837-009-0009-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0009-7

Keywords

Navigation