Skip to main content
Log in

Calculated phase diagrams, iron tolerance limits, and corrosion of Mg-Al alloys

  • Magnesium: Phase Diagrams and Solidification/Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The factors determining corrosion are reviewed in this paper, with an emphasis on iron tolerance limit and the production of high-purity castings. To understand the iron impurity tolerance limit, magnesium phase diagrams were calculated using the Pandat software package. Calculated phase diagrams can explain the iron tolerance limit and the production of high-purity castings by means of control of melt conditions; this is significant for the production of quality castings from recycled magnesium. Based on the new insight, the influence of the microstructure on corrosion of magnesium alloys is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Song and A. Atrens, Advanced Engineering Materials, 1 (1999), p. 11.

    Article  CAS  Google Scholar 

  2. G.L. Song and A. Atrens, Advanced Engineering Materials, 5 (2003), p. 837.

    Article  CAS  Google Scholar 

  3. G. Song and A. Atrens, Advanced Engineering Materials, 9 (2007), pp. 177–183.

    Article  CAS  Google Scholar 

  4. G.L. Makar and J. Kruger, International Materials Reviews, 38 (1993), p. 138.

    CAS  Google Scholar 

  5. J.D. Hanawalt, C.E. Nelson, and J.A. Peloubet, Trans. AIME, 147 (1942), p. 273.

    Google Scholar 

  6. K.N. Reichek, K.L. Clark, and J.E. Hillis, SAE Technical Paper 850417 (Warrendale, PA: SAE, 1985).

    Google Scholar 

  7. A. Froats et al., Metal Handbook, 9th ed., Vol. 13 (Materials Park, OH: ASM International, 1987), pp. 740–754.

    Google Scholar 

  8. O. Lunder, T.K. Aune, and K. Nisancioglu, Corrosion, 43 (1987), p. 291.

    CAS  Google Scholar 

  9. J.E. Hillis, SAE Technical Paper 830523 (Warrendale, PA: SAE, 1983).

    Google Scholar 

  10. J.E. Hillis and S.O. Shook, SAE Technical Paper 890205 (Warrendale, PA: SAE, 1989).

    Google Scholar 

  11. J.E. Hillis and R.W. Murray (Presentation at the SDCE 14th International Die Casting Congress and Exposition, Toronto, Canada, 1987), Paper No. G-T87-003.

  12. J.E. Hillis and K.N. Reichek, SAE Technical Paper 860288 (Warrendale, PA: SAE, 1986).

    Google Scholar 

  13. W.E. Mercer II and J.E. Hillis, SAE Technical Paper 920073 (Warrendale, PA: SAE, 1992).

    Google Scholar 

  14. O. Lunder et al., Corrosion, 45 (1989), p. 741.

    CAS  Google Scholar 

  15. G. Song, A.L. Bowles, and D.H. StJohn, Materials Science and Engineering A, 366 (2004), p. 74.

    Article  Google Scholar 

  16. R. Ambat, N.N. Aung, and Z. Zhou, Corrosion Science, 42 (2000), p. 1433.

    Article  CAS  Google Scholar 

  17. G. Song, A. Atrens, and M. Dargusch, Corrosion Science, 41 (1998), p. 249.

    Article  Google Scholar 

  18. Z. Shi, G. Song, and A. Atrens, Corrosion Science, 47 (2005), p. 2760.

    Article  CAS  Google Scholar 

  19. A. Pardo et al., Corrosion Science, 50 (2008), p. 823.

    Article  CAS  Google Scholar 

  20. A. Prado et al., Electrochimica Acta, 53 (2008), p. 7890.

    Article  Google Scholar 

  21. M.C. Zhao et al., Advanced Engineering Materials, 10 (2008), p. 104.

    Article  CAS  Google Scholar 

  22. Z. Shi, G. Song, and A. Atrens, Surface and Coatings Technology, 201 (2006), p. 492.

    Article  CAS  Google Scholar 

  23. G. Song and D. StJohn, Journal of Light Metals, 2 (2002), p. 1.

    Article  Google Scholar 

  24. G. Ballerini et al., Corrosion Science, 47 (2005), pp. 2173–2184.

    Article  CAS  Google Scholar 

  25. Z. Xuehua et al., Corrosion Science, 48 (2006), p. 4223.

    Article  Google Scholar 

  26. O. Lunder, K. Nisanccioglu, and R.S. Hansen (Presentation at Corrosion of Die Cast Magnesium-Aluminum Alloys, Detroit, MI, February/March 1993).

  27. A. Srinivasan et al., Intermetallics, 15 (2007), pp. 1511–1517.

    Article  CAS  Google Scholar 

  28. J. Zhang et al., Journal of Alloys and Compounds, (2008), doi:10.1016/j.jallcom.2008.03.089.

  29. M.B. Haroush et al., Corrosion Science, 50 (2008), p. 1766.

    Article  Google Scholar 

  30. C. Scharf et al., Advanced Engineering Materials, 7 (2005), p. 1134.

    Article  CAS  Google Scholar 

  31. C. Hoog, N. Birbilis, and Y. Estrin, Advanced Engineering Materials, 10 (2008), p. 579.

    Article  Google Scholar 

  32. A. Atrens and W. Dietzel, Advanced Engineering Materials, 9 (2007), pp. 292–297.

    Article  CAS  Google Scholar 

  33. S. Bender, J. Goellner, and A. Atrens, Advanced Engineering Materials, 10 (2008), p. 583.

    Article  CAS  Google Scholar 

  34. M.C. Zhao et al., Advanced Engineering Materials, 10 (2008), p. 93.

    Article  CAS  Google Scholar 

  35. M.C. Zhao et al., Corrosion Science, 50 (2008), p. 1939.

    Article  CAS  Google Scholar 

  36. Ming-Chun Zhao et al., Corrosion Science, (2008), doi: 10.1016/j.corsci.2008.08.023.

  37. G.L. Song et al., Corrosion Science, 39 (1997), pp. 855–875.

    Article  CAS  Google Scholar 

  38. G.L. Song et al., Corrosion Science, 39 (1997), pp. 1981–2004.

    Article  CAS  Google Scholar 

  39. M. Liu et al., Scripta Materialia, 58 (2008), pp. 421–424.

    Article  CAS  Google Scholar 

  40. J.X. Jia et al., Materials and Corrosion, 56 (2005), pp. 468–474.

    Article  CAS  Google Scholar 

  41. J.X. Jia, G.L. Song, and A. Atrens, Corrosion Science, 48 (2006), pp. 2133–2153.

    Article  CAS  Google Scholar 

  42. J.X. Jia, G. Song, and A. Atrens, Advanced Engineering Materials, 9 (2007), pp. 65–74.

    Article  CAS  Google Scholar 

  43. Y. Wan et al., Materials & Design, 29 (2008), pp. 2034–2037.

    Article  CAS  Google Scholar 

  44. Y. Wang et al., Materials Letters, 62 (2008), pp. 2181–2184.

    Article  Google Scholar 

  45. M.B. Kannan and R.K. Singh Raman, Biomaterials, 29 (2008), pp. 2306–2314.

    Article  PubMed  CAS  Google Scholar 

  46. M. Jönsson, D. Persson, and C. Leygraf, Corrosion Science, 50 (2008), pp. 1406–1413.

    Article  Google Scholar 

  47. T. Zhang et al., Electrochimica Acta, 53 (2007), pp. 561–568.

    Article  CAS  Google Scholar 

  48. G. Ben-Hamu et al., Materials Science and Engineering: A, 452–453 (2007), pp. 210–218.

    Article  Google Scholar 

  49. G. Song, Corrosion Science, 49 (2007), pp. 1696–1701.

    Article  ADS  CAS  Google Scholar 

  50. M. Jönsson, D. Persson, and D. Thierry, Corrosion Science, 49 (2007), pp. 1540–1558.

    Article  Google Scholar 

  51. J. Chen et al., Electrochimica Acta, 52 (2007), pp. 3299–3309.

    Article  CAS  Google Scholar 

  52. N. Hara et al., Corrosion Science, 49 (2007), pp. 166–175.

    Article  CAS  Google Scholar 

  53. X. Zhou et al., Corrosion Science, 48 (2006), pp. 4223–4233.

    Article  CAS  Google Scholar 

  54. T. Zhang, Y. Li, and F. Wang, Corrosion Science, 48 (2006), pp. 1249–1264.

    Article  CAS  Google Scholar 

  55. M.P. Staiger et al., Biomaterials, 27 (2006), pp. 1728–1734.

    Article  PubMed  CAS  Google Scholar 

  56. F. Witte et al., Biomaterials, 27 (2006), pp. 1013–1018.

    Article  PubMed  CAS  Google Scholar 

  57. A.-M. Lafront et al., Electrochimica Acta, 51 (2005), pp. 489–501.

    Article  CAS  Google Scholar 

  58. G. Wu et al., Journal of Applied Electrochemistry, 38 (2008), pp. 251–257.

    Article  CAS  Google Scholar 

  59. J.W. Chang et al., Journal of Applied Electrochemistry, 38 (2008), p. 207.

    Article  CAS  Google Scholar 

  60. A.D. Südholz et al., Journal of Alloys and Compounds, (2008), doi:10.1016/j.allcom.2008.03.128.

  61. N. Winzer et al., Advanced Engineering Materials, 7 (2005), pp. 659–693.

    Article  CAS  Google Scholar 

  62. N. Winzer et al., Materials Science and Engineering A, 472 (2008), p. 97.

    Article  Google Scholar 

  63. N. Winzer et al., Metallurgical and Materials Transactions A, 39 (2008), p. 1157.

    Article  ADS  Google Scholar 

  64. M. Bobby Kannan et al., Materials Science and Engineering A, 480 (2008), pp. 529–539.

    Article  Google Scholar 

  65. N. Winzer et al., Materials Science and Engineering A, 488 (2008), p. 339.

    Article  Google Scholar 

  66. N. Winzer et al., Advanced Engineering Materials, 10 (2008), p. 453.

    Article  CAS  Google Scholar 

  67. J. Chen et al., Materials Science and Engineering A, 488 (2008), pp. 428–434.

    Article  Google Scholar 

  68. J. Chen et al., Electrochemistry Communications, 10 (2008), pp. 577–581.

    Article  CAS  Google Scholar 

  69. H. Uchida et al., Environment-Induced Cracking of Materials, ed. S. Shipilov et al. (St. Louis, MO: Elsevier, 2008), pp. 323–332.

    Chapter  Google Scholar 

  70. M. Bobby Kannan et al., Scripta Materialia, 57 (2007), pp. 579–581.

    Article  Google Scholar 

  71. G. Song, A. Atrens, and D.H. StJohn, Magnesium Technology 2001, ed. J. Hryn (Warrendale, PA: TMS, 2001), p. 255.

    Google Scholar 

  72. Pandat software (CompuTherm, Madison, WI), www.computherm.com/pandat.html .

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Atrens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Uggowitzer, P.J., Schmutz, P. et al. Calculated phase diagrams, iron tolerance limits, and corrosion of Mg-Al alloys. JOM 60, 39–44 (2008). https://doi.org/10.1007/s11837-008-0164-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-008-0164-2

Keywords

Navigation