Skip to main content
Log in

Determining the stress required for deformation twinning in nanocrystalline and ultrafine-grained copper

  • Twinning in Nano-Metals
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript


Deformation twinning in nanocrystalline and ultrafine-grained materials has attracted much attention in recent years due to the ability of a high density of twin boundaries to dramatically improve mechanical properties such as yield strength and ductility. Various processing conditions such as ball milling, cryomilling, electrodeposition, and equi-channel angular extrusion have been used to form deformation twins in metals. Most techniques for estimating the shear stress needed to form deformation twins are based indirectly on the processing conditions. Here, a new method to directly measure the shear stress needed to form twin boundaries through in-situ transmission electron microscopy nanocompression testing will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. L. Lu et al., Science, 304 (2004), pp. 422–426.

    Article  CAS  Google Scholar 

  2. X.H. Chen and L. Lu, Scripta Materilia, 57 (2007), pp. 133–136.

    Article  CAS  Google Scholar 

  3. C.X. Huang et al., Acta Materialia, 54 (2006), pp. 655–665.

    Article  CAS  Google Scholar 

  4. M. Chen et al., Science, 300 (2003), pp. 1275–1277.

    Article  CAS  Google Scholar 

  5. H. Rosner, J. Markmann, and J. Weismuller, Philosophical Magazine Letters, 84 (2004), pp. 321–334.

    Article  Google Scholar 

  6. X.L. Wu and Y.T. Zhu, Applied Physics Letters, 89 (2006), no. 031922.

  7. T.H. Blewitt, R.R. Coltman, and J.K. Redman, Journal of Applied Physics, 28 (1957), pp. 651–660.

    Article  CAS  Google Scholar 

  8. H. Suzuki and C.S. Barrertt, Acta Metallurgica, 6 (1958), pp. 156–165.

    Article  Google Scholar 

  9. V. Yamakov et al., Nature Materials, 1 (2002), pp. 1–4.

    Article  Google Scholar 

  10. J. Schiotz and K.W. Jacobsen, Science, 301 (2003), pp. 1357–1359.

    Article  CAS  Google Scholar 

  11. S. Ogata, J. Li, and S. Yip, Physical Review B, 71 (2005), no. 224102.

  12. N. Bernstein and E.B. Tadmor, Physical Review B, 69 (2004), no. 094116.

  13. M.D. Uchic et al., Science, 305 (2004), pp. 986–989.

    Article  CAS  Google Scholar 

  14. Z.W. Shan et al., Nature Materials, 7 (2007), pp. 115–119.

    Article  Google Scholar 

  15. G.E. Dieter, Mechanical Metallurgy, 3rd edition (London: McGraw Hill, 1988).

    Google Scholar 

  16. M. Yu et al., Physical Review B, 74 (2006), p. no. 172107.

  17. S. Kibey et al., Acta Materialia, 55 (2007), pp. 6843–6851.

    Article  CAS  Google Scholar 

  18. Y.T. Zhu et al., Journal of Applied Physics, 98 (2005), no. 034319.

  19. J.Y. Huang, Y.K. Wu, and H.Q. Ye, Acta Materialia, 44(3) (1996), pp. 1211–1221.

    Article  CAS  Google Scholar 

  20. C.J. Youngdahl et al., Scripta Materialia, 44 (2001), pp. 1475–1478.

    Article  CAS  Google Scholar 

  21. X.Z. Liao et al., Applied Physics Letters, 84 (2004), pp. 592–594.

    Article  CAS  Google Scholar 

  22. H.V. Swygenhoven, P.M. Derlet, and A.G. Froseth, Nature Materials, 3 (2004), pp. 399–403.

    Article  Google Scholar 

  23. M. Dao et al., Acta Materialia, 54 (2006), p. 5421.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Andrew M. Minor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriram, V., Yang, JM., Ye, J. et al. Determining the stress required for deformation twinning in nanocrystalline and ultrafine-grained copper. JOM 60, 66–70 (2008).

Download citation

  • Published:

  • Issue Date:

  • DOI: