Skip to main content
Log in

Recent advances in spintronics for emerging memory devices

  • Magneto-Electric Nanostructures
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The emerging field of spintronics has the potential to bring game-changing opportunities to nanoelectronic technologies far beyond its traditional contribution to mass storage applications such as hard disk drives. The value proposition is timely since the dominant semiconductor industry is in pursuit of “More-than-Moore” to extend the technology roadmap or to create functional diversifications through enhanced system platforms. This article overviews a promising spintronic device in conjunction with recent breakthroughs in tunnel magnetoresistance and spin-transfer-torque magnetization switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.N. Baibich et al., Phys. Rev. Lett., 61 (1986), pp. 2472–2475.

    Article  Google Scholar 

  2. G. Binasch et al., Phys. Rev. B, 39 (1989), pp. 4828–4829.

    Article  CAS  Google Scholar 

  3. P. Grünberg, “Magnetic Field Sensor with Ferromagnetic Thin Layers Having Magnetically Antiparallel Polarized Components,” U.S. patent 4,949,039 (14 August 1990).

  4. S. Tehrani et al., Proc. of the IEEE, 91 (2003), pp. 703–714.

    Article  Google Scholar 

  5. W.J. Gallagher and S.S.P. Parkin, IBM J. Res. & Dev. 50 (2006), pp. 5–23.

    CAS  Google Scholar 

  6. The first MRAM product was coded MR2A16A. Freescale was formerly Motorola. In 2008 Freescale spun off its MRAM division as EverSpin Technologies.

  7. M. Jullière, Phys. Lett. A, 54 (1975), pp. 225–226.

    Article  Google Scholar 

  8. T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater., 139 (1995), pp. L231–L234.

    CAS  Google Scholar 

  9. J.S. Moodera et al., Phys. Rev. Lett., 74 (1995), pp. 3273–3276.

    Article  CAS  Google Scholar 

  10. D. Wang et al., IEEE Trans. Magn., 40 (2004), pp. 2269–2271.

    Article  CAS  Google Scholar 

  11. For example, refer to S. Yuasa, “Giant Tunneling Magnetoresistance in MgO-Based Magnetic Tunnel Junctions,” J. Phys. Soc. Jpn., 77 (2008), pp. 1–13 (031001). Also, see Reference 14.

  12. W.H. Butler et al., Phys. Rev. B, 63 (2001), pp. 1–12 (0544 16).

    Article  Google Scholar 

  13. J. Mathon and A. Umerski, Phys. Rev. B (2001), pp. 1–4 (220403).

  14. S.S.P. Parkin et al., Nature Mater., 3 (2004), pp. 862–867.

    Article  CAS  Google Scholar 

  15. D.D. Djayaprawira et al., Appl. Phys. Lett., 86 (2005), pp. 1–3 (092502).

    Article  CAS  Google Scholar 

  16. Y.M. Lee et al., App. Phys. Lett., 90 (2007), pp. 1–3 (212507).

    Google Scholar 

  17. J.C. Slonczewski, J. Magn. Magn. Mater., 159 (1996), pp. L1–L7.

    Article  CAS  Google Scholar 

  18. L. Berger, Phys. Rev. B, 54 (1996) pp. 9353–9358.

    Article  CAS  Google Scholar 

  19. J.Z. Sun, IBM J. Res. & Dev., 50 (2006), pp. 81–100.

    CAS  Google Scholar 

  20. M. Hosomi et al., IEDM Tech. Dig. (2005), pp. 459–462.

  21. T. Kawahara et al., ISSCC Dig. Tech. Papers (2007), pp. 480–481.

  22. M. Nakayama et al., “Spin Transfer Switching in TbCoFe/CoFeB/MgO/CoFeB/TbCoFe Magnetoresistive Tunneling Junctions with Perpendicular Magnetic Anisotropy” (Presentation at the 52nd Magnetism and Magnetic Materials Conference, Tampa, Florida, 5–9 November 2007).

  23. X. Zhu and J.-G. Zhu, IEEE Trans. Magn., 42 (2006), pp. 2739–2741.

    Article  CAS  Google Scholar 

  24. The International Technology Roadmap for Semiconductors: 2005 Edition, www.itrs.net/reports.html.

  25. The International Technology Roadmap for Semiconductors: 2007 Edition,www.itrs.net/reports.html.

  26. K. Tsunekawa et al., IEEE Trans. Magn., 42 (2006), pp. 103–107.

    Article  CAS  Google Scholar 

  27. Y. Huai et al., IEEE Trans. Magn., 41 (2005), pp. 2621–2626.

    Article  CAS  Google Scholar 

  28. H.J. Richter, J. Phys. D: Appl. Phys., 40 (2007), pp. R149–R177.

    Article  CAS  Google Scholar 

  29. J. Janesky et al., Appl. Phys. Lett., 85 (2004), pp. 2289–2291.

    Article  CAS  Google Scholar 

  30. K. Miura et al., VLSI Tech. Dig. Tech. Papers (2007), pp. 234–235.

  31. S.A. Wolf, A.Y. Chtchelkanova, and D.M. Treger, IBM J. Res. & Dev., 50 (2006), pp. 101–109.

    Article  CAS  Google Scholar 

  32. D.D. Awschalom, R. Epstein, and R. Hanson, Scientific American (October 2007), pp. 84–91.

  33. M.E. Flatté, IEEE Trans. Elec. Dev., 54 (2007), pp. 907–920.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung H. Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S.H. Recent advances in spintronics for emerging memory devices. JOM 60, 28–33 (2008). https://doi.org/10.1007/s11837-008-0113-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-008-0113-0

Keywords

Navigation