, 60:12 | Cite as

The development of alumina-forming austenitic stainless steels for high-temperature structural use

  • M. P. Brady
  • Y. Yamamoto
  • M. L. Santella
  • P. J. Maziasz
  • B. A. Pint
  • C. T. Liu
  • Z. P. Lu
  • H. Bei
High-Temperature Alloys Research Summary


A new family of alumina-forming austenitic stainless steels is under development at Oak Ridge National Laboratory for structural use in aggressive oxidizing environments at 600–900°C. Data obtained to date indicate the potential to achieve superior oxidation resistance compared to conventional Cr2O3-forming iron-and nickel-based heat-resistant alloys, with creep strength comparable to state-of-the-art advanced austenitic stainless steels. A preliminary assessment also indicated that the newly developed alloys are amenable to welding. Details of the alloy design approach and composition-microstructure-property relationships are presented.


Austenitic Stainless Steel Creep Resistance Scale Formation Oxide Dispersion Strengthened Austenitic Stainless Steel Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.P. Brady et al., “Alumina-Forming Austenitics: A New Class of Heat-Resistant Stainless Steels,” Stainless Steel World Magazine (March 2008), pp. 23–29.Google Scholar
  2. 2.
    Y. Yamamoto et al., Science, 316(5823) (2007), pp. 433–436.CrossRefGoogle Scholar
  3. 3.
    Y. Yamamoto et al., Met. Mater. Trans. A, 38A(11) (2007), pp. 2737–2746.CrossRefGoogle Scholar
  4. 4.
    M.P. Brady et al., Scripta Mater., 57(12) (2007), pp. 1117–1120.CrossRefGoogle Scholar
  5. 5.
    Y. Yamamoto et al., Intermetallics, 16(3) (2008), pp. 453–462.CrossRefGoogle Scholar
  6. 6.
    M.P. Brady et al., Materials Science Forum 2008 (in press).Google Scholar
  7. 7.
    Y. Yamamoto et al., to be submitted to Acta Materialia.Google Scholar
  8. 8.
    G.Y. Lai, High Temperature Corrosion of Engineering Alloys (Materials Park, OH: ASM International, 1990).Google Scholar
  9. 9.
    B. Gleeson, Corrosion and Environmental Degradation, Volume II, ed. M. Schutze, Materials Science and Technology Series (Weinheim, Germany: Wiley-VCH, 2000), chapter 5, pp. 173–228.Google Scholar
  10. 10.
    P. Kofstad, editor, High Temperature Corrosion (London: Elsevier, 1988).Google Scholar
  11. 11.
    M.P. Brady et al., Corrosion and Environmental Degradation, Volume II, ed. M. Schutze, Materials Science and Technology Series (Weinheim, Germany; Wiley-VCH, 2000), chapter 6, pp. 229–325.Google Scholar
  12. 12.
    J. Doychak, Intermetallic Compounds: Principles and Practice Vol. 1, ed. J.H. Westbrook and R.L. Fleischer (New York: John Wiley & Sons, 1994), pp. 977–1016.Google Scholar
  13. 13.
    G.H. Meier, Materials and Corrosion, 47(11) (1996), pp. 595–618.CrossRefGoogle Scholar
  14. 14.
    G. Welsch et al., Oxidation and Corrosion of Intermetallic Alloys, ed. G. Welsch and P.D. Desai (West Lafayette, IN: Purdue Research Foundation, 1996), pp. 121–266.Google Scholar
  15. 15.
    G.J. Yurek, Corrosion Mechanisms, ed. F. Mansfeld (New York: Marcel Dekker, Inc., 1987), pp. 398–446.Google Scholar
  16. 16.
    E.J. Opila, Mat. Sci. Forum, 461–464 (2004), pp. 765–773.Google Scholar
  17. 17.
    B.A. Pint, R. Peraldi, and P.J. Maziasz, Mat. Sci. Forum, 461–464 (2004), p. 815.CrossRefGoogle Scholar
  18. 18.
    P.J. Maziasz et al., International Journal of Hydrogen Energy, 32(16) (2007), pp. 3622–3630.CrossRefGoogle Scholar
  19. 19.
    F.G. Wilson, B.R. Knott, and C.D. Desforges, Met. Mater. Trans. A, 9(2) (1978), pp. 275–282.CrossRefGoogle Scholar
  20. 20.
    T. Fujioka et al., U.S. patent 3,989,514 (1976).Google Scholar
  21. 21.
    J.A. McGurty, “Austenitic Iron Alloys,” U.S. patent 4,086,085 (25 April 1978).Google Scholar
  22. 22.
    J.C. Pivin et al., Corr. Sci., 20 (1980), pp. 351–373.CrossRefGoogle Scholar
  23. 23.
    V. Ramakrishnan, J. A. McGurty, and N. Jayaraman, Oxid. Met., 60 (1988), pp. 185–200.CrossRefGoogle Scholar
  24. 24.
    F.H. Stott, G.C. Wood, and J. Stringer, Oxid. Met., 44(1–2) (1995), pp. 113–145.CrossRefGoogle Scholar
  25. 25.
    C. Wagner, Corros. Sci., 5 (1965), pp. 751–764.CrossRefGoogle Scholar
  26. 26.
    P.J. Maziasz, JOM, 41(7) (1989), pp. 14–20.Google Scholar
  27. 27.
    R.W. Swindeman et al., “Evolution of Advanced Austenitic Alloys Relative to Alloy Design Criteria for Steam Service: Part 1—Lean Stainless Steels,” Oak Ridge Natl. Lab. Rep. ORNL-6629/P1 (Oak Ridge, TN, 1990).Google Scholar
  28. 28.
    J.P. Shingledecker et al., Proc. ECCC Conference on Creep and Fracture in High Temperature Components—Design and Life Assessment Issues (Lancaster, PA: DEStech, 2005), pp. 99–109.Google Scholar
  29. 29.
    Allegheny Ludlum, TECHNICAL DATA BLUE SHEET, Stainless Steels, types 321, 347 and 348 (Pittsburgh, PA: ATI Allegheny Ludlum Corp., 2003), Scholar
  30. 30.
    E. Essuman et al., Oxid. Met., 69(3–4) (2008), pp. 143–162.CrossRefGoogle Scholar
  31. 31.
    I. Kvernes, M. Oliveira, and P. Kofstad, Corr. Sci., 17 (1997), pp. 237–252.CrossRefGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • M. P. Brady
    • 1
  • Y. Yamamoto
    • 2
  • M. L. Santella
    • 1
  • P. J. Maziasz
    • 1
  • B. A. Pint
    • 1
  • C. T. Liu
    • 2
  • Z. P. Lu
    • 3
  • H. Bei
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.University of TennesseeKnoxvilleUSA
  3. 3.University of Science and Technology in BeijingBeijingChina

Personalised recommendations