Skip to main content
Log in

Aging and fracture of human cortical bone and tooth dentin

  • Overview
  • Biological Materials Science
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms, which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms, which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms, which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force (e.g., the stress intensity) as a function of crack extension (“R-curve approach”). Here this methodology is used to study the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.L. Anderson, Fracture Mechanics Fundamentals and Applications (Boca Raton, FL: CRC Press LLC, 1995).

    Google Scholar 

  2. J.W. Melvin and F.G. Evans, “Crack Propagation in Bone,” Biomechanics Symposium ASME, 87–88 (New York, 1973).

  3. W. Bonfield and P.K. Datta, Journal of Biomechanics, 9 (1976), pp. 131–134.

    Article  CAS  Google Scholar 

  4. T.M. Wright and W.C. Hayes, Journal of Biomechanics, 10(7) (1977), pp. 419–425.

    Article  CAS  Google Scholar 

  5. J.C. Behiri and W. Bonfield, Journal of Biomechanics, 22(8–9) (1989), pp. 863–867.

    Article  CAS  Google Scholar 

  6. T.L. Norman et al., Advances in Bioengineering, Vol. 20, ed. R. Vanerby (New York: ASME, 1991), pp. 361–364.

    Google Scholar 

  7. R. De Santis et al., Journal of Materials Science: Materials in Medicine, 11 (2000), pp. 629–636.

    Article  Google Scholar 

  8. R.K. Nalla et al., Biomaterials, 24(22) (2003), pp. 3955–3968.

    Article  CAS  Google Scholar 

  9. D. Vashishth, Journal of Biomechanics, 37(6) (2004), pp. 943–946.

    Article  Google Scholar 

  10. R.K. Nalla et al., Biomaterials 26(2) (2005), pp. 217–231.

    Article  CAS  Google Scholar 

  11. K.J. Koester et al., Biomaterials, 29(10) (2008), pp. 1318–1328.

    Article  CAS  Google Scholar 

  12. P. Zioupos, Materials Science and Engineering: C, 6(1) (1998), pp. 33–40.

    Article  Google Scholar 

  13. H. Peterlik et al., Nature Materials, 5(1) (2006), pp. 52–55.

    Article  CAS  Google Scholar 

  14. J. Yan et al., Bone, 40(2) (2007), pp. 479–484.

    Article  Google Scholar 

  15. Q.D. Yang et al., Biomaterials, 27(9) (2006), pp. 2095–2113.

    Article  CAS  Google Scholar 

  16. J.D. Currey, Bones, 2nd edition (Princeton, NJ: Princeton University Press, 2002).

    Google Scholar 

  17. D.H. Pashley, Scanning Microscopy, 3(1) (1989), pp. 161–174.

    CAS  Google Scholar 

  18. A.R. Ten Cate, Oral Histology-Development, Structure and Function (St. Louis, MO: Mosby, 1994).

    Google Scholar 

  19. D.F. Weber, Archives of Oral Biology, 19(2) (1974), pp. 163–168.

    Article  CAS  Google Scholar 

  20. A.E. Porter et al., Biomaterials, 26(36) (2005), pp. 7650–7660.

    Article  CAS  Google Scholar 

  21. J.H. Kinney et al., Biomaterials, 26(16) (2005), pp. 3363–3376.

    Article  CAS  Google Scholar 

  22. D. Arola and R.K. Reprogel, Biomaterials, 26(18) (2005), pp. 4051–4061.

    Article  CAS  Google Scholar 

  23. D. Bajaj et al., Biomaterials, 27(11) (2006), pp. 2507–2517.

    Article  CAS  Google Scholar 

  24. R.O. Ritchie, Materials Science and Engineering, 103 (1988), pp. 15–28.

    Article  Google Scholar 

  25. R.O. Ritchie, International Journal of Fracture, 100 (1999), pp. 55–83.

    Article  CAS  Google Scholar 

  26. G. Fantner et al., Nature Materials, 4(8) (2005), pp. 612–616.

    Article  CAS  Google Scholar 

  27. D. Vashishth et al., Journal of Biomechanics, 36(1) (2003), pp. 121–124.

    Article  CAS  Google Scholar 

  28. Y. Yeni and T.L. Norman, J.Biomed.Mater.Res., 51 (2000), pp. 504–509.

    Article  CAS  Google Scholar 

  29. G. Parasamian and T. Norman, Journal of Materials Science: Materials in Medicine, 12 (2001), pp. 779–783.

    Article  Google Scholar 

  30. Y.N. Yeni and D.P. Fyhrie, Journal of Biomechanics, 36(9) (2003), pp. 1343–1353.

    Article  Google Scholar 

  31. R.K. Nalla et al., Nature Materials, 2(3) (2003), pp. 164–168.

    Article  CAS  Google Scholar 

  32. R.K. Nalla et al., Bone, 35(6) (2004), pp. 1240–1246.

    Article  CAS  Google Scholar 

  33. Standard Test Method For Measurement of Fracture Toughness, E1820 (West Conshohocken, PA: American Society for Testing and Materials, 2006).

  34. D.B. Burr et al., Journal of Biomechanics, 21(11) (1988), pp. 939–941.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O. Ritchie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koester, K.J., Ager, J.W. & Ritchie, R.O. Aging and fracture of human cortical bone and tooth dentin. JOM 60, 33–38 (2008). https://doi.org/10.1007/s11837-008-0068-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-008-0068-1

Keywords

Navigation