Skip to main content
Log in

Modeling fracture in carbon nanotubes using a meshless atomic-scale finite-element method

  • Research Summary
  • Multiscale Modeling of Composites
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A meshless atomic-scale computational method was developed by taking account of structural dynamic evolution, such as atomic bond breakage and regeneration. This method, based on energy minimization, is an extension of B. Liu et al.’s atomic-scale finite element method (AFEM). The proposed method is faster than the standard conjugate gradient method and AFEM and can thus significantly save computational time especially in studying large-scale problems. The bond breakage of single-wall carbon nanotubes was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Fish, Journal of Nanoparticle Research, 8(5) (2006), pp. 577–594.

    Article  Google Scholar 

  2. F.F. Abraham, Proceedings of the National Academy of Sciences of the United States of America, 99(9) (2002), pp. 5777–5782.

    Article  CAS  Google Scholar 

  3. F.F. Abraham et al., Proceedings of the National Academy of Sciences of the United States of America, 99(9) (2002), pp. 5783–5787.

    Article  CAS  Google Scholar 

  4. G.E. Moore, “Cramming More Components onto Integrated Circuits” (reprinted from Electronics, 19 April 1965, pp. 114–117), Proceedings of the IEEE, 86(1) (1998), pp. 82–85.

    Article  Google Scholar 

  5. D.W. Brenner et al., Journal of Physics: Condensed Matter, 14(4) (2002), pp. 783–802.

    Article  CAS  Google Scholar 

  6. D.W. Brenner, Physical Review B, 42(15) (1990), pp. 9458–9471.

    Article  CAS  Google Scholar 

  7. M. Arroyo and T. Belytschko, Journal of the Mechanics and Physics of Solids, 50(9) (2002), pp. 1941–1977.

    Article  CAS  Google Scholar 

  8. W.A. Curtin and R.E. Miller, Modelling and Simulation in Materials Science and Engineering, 11(3) (2003), pp. R33–R68.

    Article  CAS  Google Scholar 

  9. S. Curtarolo and G. Ceder, Physical Review Letters, 88(25) (2002), p. 4.

    Article  Google Scholar 

  10. W.N.E. and Z.Y. Huang, Physical Review Letters, 8713(13) (2001), p. 4.

    Google Scholar 

  11. S. Kohlhoff, P. Gumbsch, and H.F. Fischmeister, Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 64(4) (1991), pp. 851–878.

    Google Scholar 

  12. H. Rafii-Tabar, L. Hua, and M. Cross, Journal of Physics-Condensed Matter, 10(11) (1998), pp. 2375–2387.

    Article  CAS  Google Scholar 

  13. R.E. Rudd and J.Q. Broughton, Physica Status Solidi B-Basic Research, 217(1) (2000), pp. 251–291.

    Article  CAS  Google Scholar 

  14. G.J. Wagner and W.K. Liu, Journal of Computational Physics, 190(1) (2003), pp. 249–274.

    Article  Google Scholar 

  15. W. Yang, H.L. Tan, and T.F. Guo, Modelling and Simulation in Materials Science and Engineering, 2(3A) (1994), pp. 767–782.

    Article  Google Scholar 

  16. D. Qian, G.J. Wagner, and W.K. Liu, Computer Methods in Applied Mechanics and Engineering, 193(17–20) (2004), pp. 1603–1632.

    Article  Google Scholar 

  17. W.K. Liu et al., Computer Methods in Applied Mechanics and Engineering, 195(13–16) (2006), pp. 1407–1421.

    Article  Google Scholar 

  18. S.Q. Tang, T.Y. Hou, and W.K. Liu, Journal of Computational Physics, 213(1) (2006), pp. 57–85.

    Article  Google Scholar 

  19. H.S. Park, E.G. Karpov, and W.K. Liu, International Journal for Numerical Methods in Engineering, 64(2) (2005), pp. 237–259.

    Article  Google Scholar 

  20. H. Kadowaki and W.K. Liu, CMES-Computer Modeling in Engineering & Sciences, 7(3) (2005), pp. 269–282.

    Google Scholar 

  21. S.L. Zhang et al., International Journal for Numerical Methods in Engineering, 70(8) (2007), pp. 913–933.

    Article  Google Scholar 

  22. S.L. Zhang et al., Physical Review B, 71(11) (2005), p. 12.

    Google Scholar 

  23. S.P. Xiao and T. Belytschko, Computer Methods in Applied Mechanics and Engineering, 193(17–20) (2004), pp. 1645–1669.

    Article  Google Scholar 

  24. V.B. Shenoy et al., Journal of the Mechanics and Physics of Solids, 47(3) (1999), pp. 611–642.

    Article  Google Scholar 

  25. R. Miller et al., Engineering Fracture Mechanics, 61(3–4) (1998), pp. 427–444.

    Article  Google Scholar 

  26. V.B. Shenoy et al., Physical Review Letters, 80(4) (1998), pp. 742–745.

    Article  CAS  Google Scholar 

  27. L.E. Shilkrot, W.A. Curtin, and R.E. Miller, Journal of the Mechanics and Physics of Solids, 50(10) (2002), pp. 2085–2106.

    Article  CAS  Google Scholar 

  28. E.B. Tadmor, R. Phillips, and M. Ortiz, Langmuir, 12(19) (1996), pp. 4529–4534.

    Article  CAS  Google Scholar 

  29. E.B. Tadmor, M. Ortiz, and R. Phillips, Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 73(6) (1996), pp. 1529–1563.

    Google Scholar 

  30. M. Born and K. Huang, Dynamical Theory of the Crystal Lattices (Oxford: Oxford University Press, 1954).

    Google Scholar 

  31. B. Liu et al., Physical Review B, 72(3) (2005), p. 8.

    Article  Google Scholar 

  32. B. Liu et al., Computer Methods in Applied Mechanics and Engineering, 193(17–20) (2004), pp. 1849–1864.

    Article  Google Scholar 

  33. M.F. Yu et al., Science, 287(5453) (2000), pp. 637–640.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, X., Jiang, H., Huang, Y. et al. Modeling fracture in carbon nanotubes using a meshless atomic-scale finite-element method. JOM 60, 50–55 (2008). https://doi.org/10.1007/s11837-008-0049-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-008-0049-4

Keywords

Navigation