Skip to main content
Log in

The multiscale modeling of plastic deformation in metallic nanolayered composites

  • Overview
  • Multiscale Modeling of Composites
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Metallic nanolayered composites exhibit very high flow strength and stable plastic flow to large strains. The explanation of the unusual mechanical behavior of these materials in terms of the atomic structures of the interfaces and layer thickness ranging from nanometers to micrometers requires atomistic simulations, dislocation theory, and crystal plasticity modeling across length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.M. Clemens, H. Kung, and S.A. Barnett, MRS Bulletin, 24 (February 1999), p. 20.

    CAS  Google Scholar 

  2. T.P. Weihs, T.W. Barbee, and M.A. Wall, Acta Materialia, 45 (1997), p. 2307.

    Article  CAS  Google Scholar 

  3. A. Misra and R.G. Hoagland, Journal of Materials Science, 42 (2007), p. 1765.

    Article  CAS  Google Scholar 

  4. X. Deng et al., Advanced Engineering Materials, 7 (2005), p. 1099.

    Article  CAS  Google Scholar 

  5. A. Misra, J.P. Hirth, and R.G. Hoagland, Acta Mater., 53 (2005), p. 4817.

    Article  CAS  Google Scholar 

  6. A. Misra et al., Acta Mater., 52 (2004), p. 2387.

    Article  CAS  Google Scholar 

  7. P.M. Anderson, T. Foecke, and P.M. Hazzledine, MRS Bulletin, 24 (1999), p. 27.

    CAS  Google Scholar 

  8. M.A. Phillips, B.M. Clemens, and W.D. Nix, Acta Mater., 51 (2003), p. 3157.

    Article  CAS  Google Scholar 

  9. R.G. Hoagland, R.J. Kurtz, and C.H. Henagar, Scripta Mater., 50 (2004), p. 775.

    Article  CAS  Google Scholar 

  10. R.G. Hoagland and M.J. Demkowicz, Journal of Nuclear Materials, 372 (2008), p. 45.

    Article  Google Scholar 

  11. R.G. Hoagland, J.P. Hirth, and A. Misra, Phil. Mag., 86 (2006), p. 3537.

    Article  CAS  Google Scholar 

  12. J. Wang, R.G. Hoagland, and A. Misra, Acta Mater., (2008) in press.

  13. S.P. Baker, L. Zhang, and H.J. Gao, J. Mater. Res., 17 (2002), p. 1808.

    Article  CAS  Google Scholar 

  14. R.C. Cammarata, K. Sieradzki, and F. Spaepen, J. Appl. Phys., 87 (2000), p. 1227.

    Article  CAS  Google Scholar 

  15. F. Akasheh et al., J. Appl. Phys., 101 (2007), p. 084314.

    Article  Google Scholar 

  16. F. Akasheh et al., J. Appl. Phys., 102 (2007), p. 034314.

    Article  Google Scholar 

  17. P. Pant, K.W. Schwarz, and S.P. Baker, Acta Mater., 51 (2003), p. 3243.

    Article  CAS  Google Scholar 

  18. P.M. Anderson et al., Acta Mater., 51 (2003), p. 6059.

    Article  CAS  Google Scholar 

  19. K. Al-Fadhalah et al., Phil. Mag., 85 (2005), p. 1419.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, A., Demkowicz, M.J., Wang, J. et al. The multiscale modeling of plastic deformation in metallic nanolayered composites. JOM 60, 39–42 (2008). https://doi.org/10.1007/s11837-008-0047-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-008-0047-6

Keywords

Navigation