Skip to main content
Log in

The influence of grain boundaries and texture on ferroelectric domain hysteresis

  • Overview
  • Scanning Probe Microscopy for Materials Science
  • Published:
JOM Aims and scope Submit manuscript

Abstract

As ferroelectric device dimensions continue to shrink, the increasing ratio of boundary to bulk necessitates a thorough understanding of interfacial properties. Accordingly, the local piezoelectric hysteresis of a polycrystalline lead zirconate titanate thin film is quantitatively measured and compared to the separately measured grain orientation and the corresponding predicted residual stress and charge. The piezoelectric response is determined using a variation of atomic-force microscopy known as piezo-force microscopy, with which nearly 20 hysteresis measurements were acquired spanning four grain boundaries and five grains. The grain orientation in this region was determined by scanning-electron microscope using electron-backscattered diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gruverman et al., “Asymmetric Nanoscale Switching in Ferroelectric Thin Films by Scanning Force Microscopy,” Applied Physics Letters, 78(18) (2001), pp. 2751–2753.

    Article  ADS  CAS  Google Scholar 

  2. Y. Kim et al., “Grain/Domain Interaction and Its Effect on Bit Formation in Ferroelectric Films,” Integrated Ferroelectrics, 78 (2006), pp. 255–260.

    Article  CAS  Google Scholar 

  3. M. Alexe et al., “Switching Properties of Self-Assembled Ferroelectric Memory Cells,” Applied Physics Letters, 75(8) (1999), pp. 1158–1160.

    Article  ADS  CAS  Google Scholar 

  4. A. Gruverman and A. Kholkin, “Nanoscale Ferroelectrics: Processing, Characterization and Future Trends,” Reports on Progress in Physics, 69(8) (2006), pp. 2443–2474.

    Article  ADS  CAS  Google Scholar 

  5. V. Nagarajan et al., “Nanoscale Polarization Relaxation in a Polycrystalline Ferroelectric Thin Film: Role of Local Environments,” Applied Physics Letters, 86(26) (2005), pp. 192910–192913.

    Article  ADS  Google Scholar 

  6. A. Pignolet et al., “Orientation Dependence of Ferroelectricity in Pulsed-Laser-Deposited Epitaxial Bismuth-Layered Perovskite Thin Films,” Applied Physics A—Materials Science & Processing, 70(3) (2000), pp. 283–291.

    Article  ADS  CAS  Google Scholar 

  7. D.A. Bonnell and B.D. Huey, “Basic Principles of Scanning Probe Microscopy,” Scanning Probe Microscopy & Spectroscopy: Theory, Techniques, and Applications, ed. D.A. Bonell (New York: Wiley-VCH, 2001), pp. 7–42.

    Google Scholar 

  8. O. Kolosov et al., “Nanoscale Visualization and Control of Ferroelectric Domains by Atomic-Force Microscopy,” Physical Review Letters, 74(21) (1995), pp. 4309–4312.

    Article  ADS  CAS  Google Scholar 

  9. S. Hong et al., “Principle of Ferroelectric Domain Imaging Using Atomic Force Microscope,” Journal of Applied Physics, 89 (2001), no. 2, pp. 1377–1386.

    Article  ADS  CAS  Google Scholar 

  10. O. Auciello, A. Gruverman, and H. Tokumoto, “Scanning Force Microscopy Study of Domain Structure in Pb(ZrxTi1−x)O−3 Thin Films and Pt/PZT/Pt and RuO2/PZT/RuO2 Capacitors,” Integrated Ferroelectrics, 15(1–4) (1997), pp. 107–114.

    CAS  Google Scholar 

  11. S. Dunn et al., “Ultrahigh Resolution of Lead Zirconate Titanate 30/70 Domains as Imaged by Piezoforce Microscopy,” Nanotechnology, 13(4) (2002), pp. 456–459.

    Article  ADS  CAS  Google Scholar 

  12. K. Franke et al., “Modification and Detection of Domains on Ferroelectric PZT Films by Scanning Force Microscopy,” Surface Science, 302(1–2) (1994), pp. L283–L288.

    Article  CAS  Google Scholar 

  13. C.S. Ganpule et al., “Imaging Three-Dimensional Polarization in Epitaxial Polydomain Ferroelectric Thin Films,” Journal of Applied Physics, 91(3) (2002), pp. 1477–1481.

    Article  ADS  CAS  Google Scholar 

  14. H. Shin et al., “Read/Write Mechanisms and Data Storage System Using Atomic Force Microscopy and MEMS Technology,” Ultramicroscopy, 91(1–4) (2002), pp. 103–110.

    Article  CAS  Google Scholar 

  15. T. Tybell et al., “Domain Wall Creep in Epitaxial Ferroelectric Pb(Zr0.2Ti0.8)O−3 Thin Films,” Physical Review Letters, 89(9) (2002), http://prola.aps.org/abstract/PRL/v89/i9/e097601.

  16. F. Zavaliche et al., “Polarization Switching in Epitaxial BiFeO3 Films,” Applied Physics Letters, 87(25) (2005), http://scitation.aip.org/dbt/dbt.jsp?KEY=APPLAB&Volume=87&Issue=25.

  17. D. Damjanovic, “Ferroelectric, Dielectric and Piezoelectric Properties of Ferroelectric Thin Films and Ceramics,” Reports on Progress in Physics, 61(9) (1998), pp. 1267–1324.

    Article  ADS  CAS  Google Scholar 

  18. B.D. Huey et al., “The Importance of Distributed Loading and Cantilever Angle in Piezo-Force Microscopy,” Journal of Electroceramics, 13(1–3) (2004), pp. 287–291.

    Article  Google Scholar 

  19. D.P. Field, “Recent Advances in the Application of Orientation Imaging,” Ultramicroscopy, 67(1–4) (1997), pp. 1–9.

    Article  CAS  Google Scholar 

  20. F.J. Humphreys, “Review—Grain and Subgrain Characterisation by Electron Backscatter Diffraction,” Journal of Materials Science, 36(16) (2001), pp. 3833–3854.

    Article  CAS  Google Scholar 

  21. D.J. Prior et al., “The Application of Electron Backscatter Diffraction and Orientation Contrast Imaging in the SEM to Textural Problems in Rocks,” American Mineralogist, 84(11–12) (1999), pp. 1741–1759.

    CAS  Google Scholar 

  22. A.J. Wilkinson and P.B. Hirsch, “Electron Diffraction Based Techniques in Scanning Electron Microscopy of Bulk Materials,” Micron, 28(4) (1997), pp. 279–308.

    Article  Google Scholar 

  23. R.E. Garcia, B.D. Huey, and J.E. Blendell, “Virtual Piezoforce Microscopy of Polycrystalline Ferroelectric Films,” Journal of applied Physics, 100(6) (2006), http://scitation.aip.org/dbt/dbt.jsp?KEY=JAPIAU&Volume=100&Issue=6.

  24. B.D. Huey et al., “Challenges and Results for Quantitative Piezoelectric Hysteresis Measurements by Piezo Force Microscopy,” Microscopy and Microanalysis, 11(S-03) (2005), pp. 6–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, R., García, R.E., Blendell, J.E. et al. The influence of grain boundaries and texture on ferroelectric domain hysteresis. JOM 59, 17–21 (2007). https://doi.org/10.1007/s11837-007-0004-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-007-0004-9

Keywords

Navigation