Skip to main content
Log in

An investigation of phase transformation behavior in sputter-deposited PtMn thin films

  • Research Summary
  • Rapid/Pulse Thermal Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Sputter-deposited, equiatomic PtMn thin films have application in giant magnetoresistive spin valves, tunneling magnetoresistive spin valves, and magnetic random access memory. However, the as-deposited films are found to be a disordered A1 phase in a paramagnetic state rather than an antiferromagnetic phase with L10 structure, which is needed for device operation. Therefore, a postannealing step is required to induce the phase transformation from the asdeposited A1 face-centered-cubic phase to the antiferromagnetic L10 phase. The A1 to L10 metastable transformation was studied by x-ray diffraction and differential-scanning calorimetry. An exothermic transformation enthalpy of −12.1 kJ/mol of atoms was determined. The transformation kinetics were simulated using the Johnson-Mehl-Avrami analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Baibich et al., Phys. Rev. Lett., 61 (1998), p. 2472.

    Article  Google Scholar 

  2. B. Dieny et al., Phys. Rev. B, 43 (1991), p. 1297.

    Article  CAS  Google Scholar 

  3. D.E. Heim et al., IEEE Transactions on Magnetics, 30 (1994), p. 316.

    Article  CAS  Google Scholar 

  4. S. Yuan and H. Bertram, J. Appl. Phys., 75 (1994), p. 6385.

    Article  CAS  Google Scholar 

  5. J.C. Mallinson, Magneto-Resistive Heads, Fundamentals and Applications (San Diego, CA: Academic, 1996).

    Google Scholar 

  6. J.S. Moodera et al., Appl. Phys. Lett., 70 (1997), p. 3050.

    Article  CAS  Google Scholar 

  7. Stuart S.P. Parkin et al., Nature Materials, 3 (2004), p. 862.

    Article  CAS  Google Scholar 

  8. Shinji Yuasa et al., Nature Materials, 3 (2004), p. 868.

    Article  CAS  Google Scholar 

  9. Johan Åkeman, Science, 308 (2005), p. 508.

    Article  CAS  Google Scholar 

  10. J.P. Nozieres et al., J. Appl. Phys., 87 (2000), p. 3920.

    Article  CAS  Google Scholar 

  11. G.W. Anderson, Yiming Huai, and Mahendra Pakala, J. Appl. Phys., 87 (2000), p. 5726.

    Article  CAS  Google Scholar 

  12. J.P. Nozieres et al., J. Appl. Phys., 87 (2000), p. 6609.

    Article  CAS  Google Scholar 

  13. W. Mahler, Z. Metallkd., 46 (1955), p. 282.

    Google Scholar 

  14. J.H. Perepezko, Mater. Res. Soc. Symp. Proc., 19 (1983), p. 223.

    CAS  Google Scholar 

  15. F.R. de Boer et al., Cohesion in Metals, Transition Metal Alloys (North-Holland, Amsterdam: Elsevier, 1988).

    Google Scholar 

  16. R. Krachler, H. Ipser, and K.L. Komarek, Z. Metallkde., 79 (1988), p. 96.

    CAS  Google Scholar 

  17. H.E. Kissinger, J. Res. Natl. Bur. Stand., 57 (1956), p. 217.

    CAS  Google Scholar 

  18. H. Yinnon and D.R. Uhlmann, J. Non-Cryst. Solids, 54 (1983), p. 253.

    Article  CAS  Google Scholar 

  19. D.W. Henderson, J. Non-Cryst. Solids, 30 (1979), p. 301.

    Article  CAS  Google Scholar 

  20. P. Altuzar and R. Valenzuela, Mater. Lett., 11 (1991), p. 101.

    Article  CAS  Google Scholar 

  21. L.C. Chen et al., J. Mater. Res., 5 (1990), p. 1871.

    CAS  Google Scholar 

  22. F. Spaepen and C.V. Thompson, Appl. Surf. Sci., 38 (1989), p. 1.

    Article  CAS  Google Scholar 

  23. S. Budurov and G. Zolova, Cryst. Res. Technol., 28 (1993), p. 925.

    Article  CAS  Google Scholar 

  24. L.C. Chen and F. Spaepen, J. Appl. Phys., 69 (1991), p. 679.

    Article  CAS  Google Scholar 

  25. S. Ranganathan and M. von Heimendal, J. Mater. Sci., 16 (1981), p. 2401.

    Article  CAS  Google Scholar 

  26. J.H. Perepezko, private communication (2001).

  27. W.A. Johnson and K.F. Mehl, Trans. Am. Inst. Min., Met. Pet. Eng., 135 (1981), p. 315.

    Google Scholar 

  28. M. Avrami, J. Chem. Phys., 7 (1939), p. 1103.

    Article  CAS  Google Scholar 

  29. M. Avrami, J. Chem. Phys., 8 (1940), p. 212.

    Article  CAS  Google Scholar 

  30. M. Avrami, J. Chem. Phys., 9 (1941), p. 177.

    Article  CAS  Google Scholar 

  31. J.W. Christian, The Theory of Transformations in Metals and Alloys, 2nd ed., (New York; Pergamon, 1975).

    Google Scholar 

  32. R.A. Ristau et al., J. Appl. Phys., 86 (1999) p. 4527.

    Article  CAS  Google Scholar 

  33. Q.Z. Hong et al., J. Appl. Phys., 74 (1993), p. 4958.

    Article  CAS  Google Scholar 

  34. P.D. Garn, Crit. Rev. Anal. Chem., 2 (1972), p. 65.

    Google Scholar 

  35. T. Ozawa, Polymer, 12 (1971), p. 150.

    Article  CAS  Google Scholar 

  36. C.W. Price, Acta Metall. Mater., 38 (1990), p. 727.

    Article  CAS  Google Scholar 

  37. K. Barmak, J.M. Rickman, and C. Michaelsen, J. Electron. Mater., 26 (1997), p. 1009.

    CAS  Google Scholar 

  38. C. Michaelsen et al., Mat. Res. Soc. Symp. Proc., 398 (1996), p. 245.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, C.X., Ladwig, P.F., Ott, R.D. et al. An investigation of phase transformation behavior in sputter-deposited PtMn thin films. JOM 58, 50–54 (2006). https://doi.org/10.1007/s11837-006-0182-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0182-x

Keywords

Navigation