Skip to main content
Log in

The pulse-thermal processing of NdFeB-based nanocomposite magnets

  • Research Summary
  • Rapid/Pulse Thermal Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Pulse-thermal processing (PTP) based on high-density plasma arc lamp technology has been utilized to crystallize melt-spun NdFeB-based amorphous ribbons to form magnetic nanocomposites consisting of Nd2Fe14B and α-Fephases. After applying suitable pulses, the NdFeB-based ribbons were developed with hard magnetic properties. The highest coercivity can be obtained for ribbons with a thickness of 40 μm after PTP treatments consisting of a 400 A pulse for 0.25 s for ten times. The correlation between PTP parameters and magnetic properties indicates that PTP is an effective approach to control the structure and properties of nanostructured magnetic materials. Transmission-electorn microscopy analysis revealed that the observed decoupling between the hard and the soft phases is related to large grain size in the samples, which is in turn related to different heating conditions in different regions of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Coehoom, D.B. de Mooij, and C. DeWaard, J. Magn. Magn. Mater., 80 (1989), pp. 101–104.

    Article  Google Scholar 

  2. S.D. Li et al., J. Appl. Phys., 92 (2002), pp. 7514–7518.

    Article  CAS  Google Scholar 

  3. R. Skomski and J.M.D. Coey, Phys. Rev. B, 48 (1993), pp. 15812–15816.

    Article  CAS  Google Scholar 

  4. R.H. Yu et al., J. Appl. Phys., 85 (1999), pp. 6034–6036.

    Article  CAS  Google Scholar 

  5. Z.M. Chen et al., J. Appl. Phys., 89 (4) (2001), pp. 2299–2303.

    Article  CAS  Google Scholar 

  6. V. Neu and L. Schultz, J. Appl. Phys., 90 (2001), pp. 1540–1544.

    Article  CAS  Google Scholar 

  7. W. Liu et al., J. Appl. Phys., 93 (2003), pp. 8131–8133.

    Article  CAS  Google Scholar 

  8. T. Schrefl, J. Fidler, and H. Kronmüller, Phys. Rev. B, 49 (9) (1994), pp. 6100–6110.

    Article  CAS  Google Scholar 

  9. M. Yu, J. Appl. Phys., 83 (1998), pp. 6611–6613.

    Article  CAS  Google Scholar 

  10. J.P. Liu et al., J. Appl. Phys., 85 (1999), pp. 4812–4814.

    Article  CAS  Google Scholar 

  11. J. Zhang et al., J. Appl. Phys., 89 (2001), pp. 5601–5605.

    Article  CAS  Google Scholar 

  12. Z.Q. Jin et al., Appl. Phys. Lett., 84 (2004), pp. 4382–4384.

    Article  CAS  Google Scholar 

  13. Z.Q. Jin et al., Acta Materialia, 52 (2004), pp. 2147–2154.

    Article  CAS  Google Scholar 

  14. Y. Shao, M.L. Yan, and D.J. Sellmyer, J. Appl. Phys., 93 (2003), pp. 8152–8154.

    Article  CAS  Google Scholar 

  15. K.T. Chu et al., J. Appl. Phys., 38 (2005), pp. 4009–4014.

    CAS  Google Scholar 

  16. R.D. Ott et al., JOM, 56 (10) (2004), pp. 45–47.

    CAS  Google Scholar 

  17. J.D.K. Rivard et al., Surface Engineering, 20 (2004), pp. 220–228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Z.Q., Chakka, V.M., Wang, Z.L. et al. The pulse-thermal processing of NdFeB-based nanocomposite magnets. JOM 58, 46–49 (2006). https://doi.org/10.1007/s11837-006-0181-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0181-y

Keywords

Navigation