Skip to main content
Log in

PEM fuel cells: status and challenges for commercial stationary power applications

  • Overview
  • Fuel Cells
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The past decade has seen tremendous advances in proton exchange membrane fuel cell (PEMFC) technology: However, there remain many challenges to bring commercially viable stationary PEMFC products to the market. This review, from a manufacturer's perspective, focuses on system reliability and materials compatibility and their strong impact on stack life and overall system durability. Statistical analysis is based on field data from more than 600 stationary PEMFC systems for both continuous and back-up power applications. Sealing materials and coolants are used to illustrate the approaches taken to evaluate materials compatibility studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Vielstich, A. Lamm, and H.A. Gasteiger, eds., Handbook of Fuel Cells-Fundamentals, Technology, and Applications (New York: John Wiley & Sons, 2003).

    Google Scholar 

  2. F. de Bruijn, Green Chem., 7 (2005), pp. 132–150.

    Article  CAS  Google Scholar 

  3. M. Winter and R.J. Brodd, Chem. Rev., 104 (2004), pp. 4245–4269.

    Article  CAS  Google Scholar 

  4. V.S. Bagotzky, N.V. Osetrova, and A.M. Skundin, Russ. J. Electrochem., 39 (9) (2003), pp. 919–934.

    Article  CAS  Google Scholar 

  5. P. Costamagna and S. Srinivasan, J. Power Sources, 102 (2001), pp. 242–252.

    Article  CAS  Google Scholar 

  6. P. Costamagna and S. Srinivasan, J. Power Sources, 102 (2001), p. 253–269.

    Article  CAS  Google Scholar 

  7. V. Mehta and J.S. Cooper, J. Power Sources, 114 (2003), pp. 32–53.

    Article  CAS  Google Scholar 

  8. H.A. Gasteiger and M.F. Mathias, Proc. Electrochem. Soc., Proton Conducting Membrane Fuel Cells III, PV2002-31, eds. M. Murthy et al. (Pennington, N.J.: The Electrochemical Society, 2005), pp. 1–24.

    Google Scholar 

  9. S.M. Haile, Acta Mater., 51 (2003), pp. 5981–6000.

    Article  CAS  Google Scholar 

  10. N.P. Brandon, S. Skinner, and B.C.H. Steele, Annu. Rev. Mater. Res. 33 (2003), pp. 183–213.

    Article  CAS  Google Scholar 

  11. H.A. Gasteiger et al., Appl. Catal. B, 56 (2005), pp. 9–35.

    Article  CAS  Google Scholar 

  12. B. Wang, J. Power Sources, 152 (2005), pp. 1–15.

    Article  CAS  Google Scholar 

  13. E. Antolini, J. Appl. Electrochem., 34 (2004), pp. 563–576.

    Article  CAS  Google Scholar 

  14. E. Antolini, J. Mater. Sci., 38 (2003), pp. 2995–3005.

    Article  CAS  Google Scholar 

  15. E. Antolini, Mater. Chem. Phys., 78 (2003), pp. 563–573.

    Article  CAS  Google Scholar 

  16. S. Litster and G. McLean, J. Power Sources, 130 (2003), pp. 61–76.

    Article  CAS  Google Scholar 

  17. T.R. Ralph and M.P. Hogarth, Platinum Metal Rev., 46 (3) (2002), pp. 117–135.

    CAS  Google Scholar 

  18. N.M. Markovic and P.N. Ross, CATTECH, 4 (2) (2000), pp. 110–126.

    Article  CAS  Google Scholar 

  19. R. Souzy and B. Ameduri, Prog. Polym. Sci., 30 (2005), pp. 644–687.

    Article  CAS  Google Scholar 

  20. M.A. Hickner and B.S. Pivovar, Fuel Cells, 5 (2) (2005), pp. 213–229.

    Article  CAS  Google Scholar 

  21. K.A. Kenneth and R.B. Moore, Chem. Rev., 104 (2004), pp. 4535–4585.

    Article  CAS  Google Scholar 

  22. M.A. Hickner et al., Chem. Rev., 104 (10) (2004), pp. 4587–4611.

    Article  CAS  Google Scholar 

  23. D.E. Curtis et al., J. Power Sources, 131 (2004), pp. 41–48.

    Article  CAS  Google Scholar 

  24. X. Li and I. Sabir, Int. J. Hydrogen Energy, 30 (4) (2001), pp. 359–371.

    Article  CAS  Google Scholar 

  25. A. Hermann, T. Chaudhuri, and P. Spagnol, Int. J. Hydrogen Energy, 30 (12) (2005), pp. 1297–1302.

    Article  CAS  Google Scholar 

  26. R.J. Farrauto, Appl. Catal. B, 56 (1–2) (2005), pp. 3–7.

    Article  CAS  Google Scholar 

  27. J. van Herle, Chimia, 58 (12) (2004), pp. 887–895.

    Article  Google Scholar 

  28. R.J. Farrauto et al., Annu. Rev. Mater. Res., 33 (2003), pp. 1–27.

    Article  CAS  Google Scholar 

  29. C.-S. Song, Catal. Today, 77 (2002), pp. 17–49.

    Article  CAS  Google Scholar 

  30. E. David, J. Mater. Proc. Tech., 162–163 (2005), pp. 169–177.

    Article  CAS  Google Scholar 

  31. F. Schüth, B. Bogdanović, and M. Felderhoff. Chem. Commun. (2004), pp. 2249–2258.

  32. G. Sandi, Electrochem. Soc. Interface, 13 (3) (2004), pp. 40–44.

    CAS  Google Scholar 

  33. U.S. Department of Energy, “Multi-Year Research, Development and Demonstration Programs for Hydrogen, Fuel Cells & Infrastructure Technologies Program’ (last revised on January 21, 2005). www. eere.energy.gov/hydrogenandfuelcells/mypp/.

  34. S.D. Knight et al., J. Power Sources, 127 (2004), pp. 127–134.

    Article  CAS  Google Scholar 

  35. S. Ibe et al., 2003 Fuel Cell Seminar Abstracts (St. Louis, MO: Mira Digital Publishing, 2003), pp. 941–944.

    Google Scholar 

  36. A.S. Feitelberg et al., J. Power Sources, 147 (2005), pp. 203–207.

    Article  CAS  Google Scholar 

  37. M.K. White et al., 2004 Fuel Cell Seminar Abstracts (St. Louis, MO: Mirra Digital Publishing, 2004), pp. 160–163.

    Google Scholar 

  38. See for example: B.C. Davenport, Plug Power Fuel Cell Demonstration Project at the Watervliet Arsenal, (DACA42-01-C-0053), Interim Final Project Report to DOD (Latham, NY: 21 March 2003).

  39. Detailed performance data atvarious Department of Defense sites are available at: http://dodfuelcell.cecer. army.mil/res/site_performance.php4.

  40. T.W. Patterson and R.M. Darling, Electrochem. Solid-State Lett, 9, (2006), pp. A183-A185.

    Article  CAS  Google Scholar 

  41. A. Taniguchi et al., J. Power Sources, 130 (2004), pp. 42–49.

    Article  CAS  Google Scholar 

  42. C.A. Reiser et al., Electrochem. Solid-State Lett., 8 (2004), pp. A273-A276.

    Article  CAS  Google Scholar 

  43. M. Schulze et al., J. Power Sources, 127 (2005), pp. 222–229.

    Article  CAS  Google Scholar 

  44. K. Narusawa et al., JSAE Review, 24 (1) (2003), pp. 41–46.

    Article  CAS  Google Scholar 

  45. R.C. Makkus et al., J. Power Sources, 86 (2000), pp. 274–282.

    Article  CAS  Google Scholar 

  46. J. St-Pierre, J. New Mater. Electrochem. Systems, 3 (2000), pp. 99–106.

    CAS  Google Scholar 

  47. V. Stanic and M. Hoberecht, 2004 Fuel Cell Seminar Abstracts (St. Louis, MO: Mira Digital Publishing, 2004), pp. 85–88.

    Google Scholar 

  48. Plug Power internal data (2006).

  49. A. Peterson, K.-S. Im, and M.-C. Lai, Proc. 3rd Intl. Conf. Fuel Cell Sci. Eng. Tech., ed. R.K. Shah, E. Ubong, and S. Samuelsen (New York: ASME, 2005), pp. 713–719.

    Google Scholar 

  50. L.-D. Chen, J.A. Schaeffer, and J.P. Seaba, “A Simulink Model for Calculation of Fuel Cell Stack Performance,” FUEL-143. Technical Program for the 228th ACS National Meeting, Philadelphia, PA 22–26 Ausgust 2004.

  51. M. Katz, J. Electrochem. Soc., 125 (4) (1978), pp. 515–520.

    Article  CAS  Google Scholar 

  52. P. Rapaport and J.P. Healy, U.S. patent 6,773,841 (2004).

    Google Scholar 

  53. R.P. Roche and M.P. Nowak, U.S. patent 5,079,104 (1992).

    Google Scholar 

  54. R.C. Nickols and J.C. Trocciola, U.S. patent 3,940,285 (1976).

  55. M. Katz, S.W. Smith, and D. Reitsma, U.S. patent 3,923,546 (1975).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, B., Guo, Q., Pollard, R. et al. PEM fuel cells: status and challenges for commercial stationary power applications. JOM 58, 45–49 (2006). https://doi.org/10.1007/s11837-006-0053-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0053-5

Keywords

Navigation