Skip to main content
Log in

The role of competing mechanisms in the fatigue-life variability of a titanium and gamma-TiAl alloy

  • Research Summary
  • Titanium
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The variability in fatigue lives of an α+β titanium alloy (Ti-6Al-2Sn-4Zr-6Mo) and a γ-TiAl-based alloy in stress vs. life space resulted from superposition of variability associated with two separate mechanisms. The mean lives of the two mechanisms diverged with decreasing stress level, giving rise to the variability. A life-prediction methodology based on the variability in the worst-case mechanism is suggested. The potential for reducing uncertainty and increasing the utilization of the useful life as compared to more traditional approaches is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Boyer, Mater. Sci. Eng., A213 (1996), p. 103.

    CAS  Google Scholar 

  2. Y. Honnorat, Mater. Sci. Eng., A213 (1996), p. 115.

    CAS  Google Scholar 

  3. D.P. Davies and B.C. Gittos, Titanium ’95 Science and Technology, ed. P.A. Blenkinso, W.J. Evans, and H.M. Flower (London, United Kingdom: The Institute of Materials, 1996), p. 1609.

    Google Scholar 

  4. Y.W. Kim, J. Metals, 41 (7) (1989), p. 24.

    CAS  Google Scholar 

  5. J.M. Larsen et al., High Temperature Aluminides and Intermetallics, ed. S.H. Whang et al. (Warrendale, PA: TMS, 1990), p. 521.

    Google Scholar 

  6. M. Nazmy et al., Scripta Materialia, 45 (2001), p. 787.

    Article  CAS  Google Scholar 

  7. N. Biery et al., Metall. Mater. Trans. A, 33A (2002), p. 3127.

    Article  CAS  Google Scholar 

  8. J. Kumpfert, Y.W. Kim, and D.M. Dimiduk, Mater. Sci. and Eng. A, A192/193 (1995), p. 465.

    Article  CAS  Google Scholar 

  9. K.S. Chan, J. Metals, 49 (7) (1997), pp. 53–58.

    CAS  Google Scholar 

  10. L. Christodoulou and J.M. Larsen, JOM, 56 (3) (2004), pp. 15–19.

    Article  Google Scholar 

  11. P.E. Magnusen et al., Int. J. Fatigue, 19 (1998), p. S275.

  12. J.F. Lei et al., J. Mater. Res., 12 (1997), p. 2571.

    Article  CAS  Google Scholar 

  13. P.J. Laz, B.A. Craig, and B.M. Hillberry, Int. J. Fatigue, 23 (2001), p. S119.

  14. M.T. Todinov, Mater. Sci. Eng., A255 (1998), p. 117.

    CAS  Google Scholar 

  15. M.A. Przystupa et al., Int. J. Fatigue, 19 (1997), p. S285.

  16. B. Skallerud, T. Iveland, and G. Harkegard, Engng. Fract. Mechanics, 44 (1993), p. 857.

    Article  Google Scholar 

  17. J. Luo and P. Bowen, Acta Materialia, 51 (2003), p. 3521.

    Article  CAS  Google Scholar 

  18. J. Luo and P. Bowen, Acta Materialia, 51 (2003), p. 3537.

    Article  CAS  Google Scholar 

  19. J. Ruppen, D. Eylon, and A.J. McEvily, Metall. Trans. A, 11A (1980), p. 1072.

    CAS  Google Scholar 

  20. J. Lankford and S.J. Hudak, Jr., Int. J. Fatigue, 9 (1987), p. 87.

    Article  Google Scholar 

  21. S.K. Sasaki, Y. Ochi, and A. Ishii, Engng. Fract. Mech., 28 (1987), p. 761.

    Article  Google Scholar 

  22. M. Goto, Fatigue Fract. Engng. Mater. Struct., 17 (1994), p. 635.

    Article  CAS  Google Scholar 

  23. V. Recina, D. Lundstrom, and B. Karlsson, Metall. Trans. A, 33A (2002), p. 2869.

    Article  CAS  Google Scholar 

  24. J. Kumpfert, Y.W. Kim, and D.M. Dimiduk, Mater. Sci. Eng. A, A192/193 (1995), p. 465.

    CAS  Google Scholar 

  25. S.K. Jha et al., Scripta Materialia, 48 (2003), p. 1637.

    Article  CAS  Google Scholar 

  26. S.K. Jha, J.M. Larsen, and A.H. Rosenberger, Acta Materialia, 53 (2005), p. 1293.

    Article  CAS  Google Scholar 

  27. S.K. Jha, J.M. Larsen, and A.H. Rosenberger, Ti-2003: Science and Technology, ed. G. Lutjering and J. Albrecht (Weinheim, Germany: Wiley-VCH, 2003), p. 1887.

    Google Scholar 

  28. S.K. Jha et al., Probabilistic Aspects of Life Prediction, ASTM STP 1450, ed. W.S. Johnson and B.M. Hillberry (West Conshohocken, PA: ASTM International, 2004), p. 116.

    Google Scholar 

  29. A.S. Beranger, X. Feaugas, and M. Clavel, Mater. Sci. Eng., A172 (1993), p. 31.

    CAS  Google Scholar 

  30. X. Feaugas and M. Clavel, Acta Materialia, 45 (1997), p. 2685.

    Article  CAS  Google Scholar 

  31. A.H. Rosenberger, B.D. Worth, and J.M. Larsen, Structural Intermetallics, ed. M.V. Nathal et al. (Warrendale, PA: TMS, 1997), p. 555.

    Google Scholar 

  32. S.K. Jha, J.M. Larsen, and A.H. Rosenberger, Materials Damage Prognosis, ed. J.M. Larsen et al. (Warrendale, PA: TMS, 2005), p. 143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact S.K. Jha, Universal Technology Corporation, 1270 N Fairfield Road, Dayton, OH 45432; (937) 255-0388; fax (937) 656-4840; e-mail sushantjha@hotmail.com

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, S.K., Larsen, J.M. & Rosenberger, A.H. The role of competing mechanisms in the fatigue-life variability of a titanium and gamma-TiAl alloy. JOM 57, 50–54 (2005). https://doi.org/10.1007/s11837-005-0116-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-005-0116-z

Keywords

Navigation