Skip to main content
Log in

Predicting phase equilibrium, phase transformation, and microstructure evolution in titanium alloys

  • Overview
  • Phase Transformations
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Phase transformation and microstructural evolution in commercial titanium alloys are extremely complex. Traditional models that characterize microstructural features by average values without capturing the anisotropy and spatially varying aspects may not be sufficient to quantitatively define the microstructure and hence to allow for establishing a robust microstructure-property relationship. This article discusses recent efforts in integrating thermodynamic modeling and phase-field simulation to develop computational tools for quantitative prediction of phase equilibrium and spatiotemporal evolution of microstructures during thermal processing that account explicitly for precipitate morphology, spatial arrangement, and anisotropy. The rendering of the predictive capabilities of the phase-field models as fast-acting design tools through the development of constitutive equations is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Tiley et al., Mat. Sci. Eng. A-Struct., 372 (1–2) (2004), p. 191.

    Article  CAS  Google Scholar 

  2. S.L. Semiatin, N. Stefansson, and R.D. Doherty, Metall. Mater. Trans. A, 36A (5) (2005), p. 1372–1376.

    Article  CAS  Google Scholar 

  3. J.D. Miller and S.L. Semiatin, Metall. Mater. Trans. A, 36A (1) (2005), p. 259.

    Article  CAS  Google Scholar 

  4. S.L. Semiatin et al., Metall. Mater. Trans. A, 34A (10) (2003), pp. 2377–2386.

    Article  CAS  Google Scholar 

  5. B. Appolaire, L. Heriche, and E. Aeby-Gautier, Acta Mater, 53 (2005), p. 3001.

    Article  CAS  Google Scholar 

  6. S. Malinov et al., Metall. Mater. Trans. A, 23A (2001), p. 879.

    Article  Google Scholar 

  7. I. Katzarov, S. Malinov, and W. Sha, Metall. Mater. Trans. A (33A) (2002), p. 1027.

  8. L.Q. Chen, Annu. Rev. Mater. Res., 32 (2002), p. 113.

    Article  CAS  Google Scholar 

  9. Y. Wang, L.Q. Chen, and A.G. Khachaturyan, Computer Simulation in Materials Science Nano/Meso/Macroscopic Space and Time Scales, ed. H.O. Kirchner, K.P. Kubin, and V. Pontikis (Dordrecht, the Netherlands: Kluwer Academic Publishers, 1996), pp. 325–371.

    Google Scholar 

  10. Y. Wang and L.Q. Chen, “Simulation of Microstructural Evolution Using the Field Method,” Methods in Material Research (New York: John Wiley & Sons, Inc., 2000), pp. 2a.3.1–2a.3.23.

    Google Scholar 

  11. A. Karma, “Phase Field Methods,” Encyclopedia of Materials: Science and Technology (Oxford, U.K.: Elsevier, 2001), pp. 6873–6886.

    Google Scholar 

  12. Q. Chen et al., Scripta Mater., 50 (2004), pp. 471–476.

    Article  CAS  Google Scholar 

  13. C. Shen et al., Materials Design Approaches and Experiences, ed. J.-C. Zhao, M. Fahrmann, and T.M. Pollock (Warrendale, PA: TMS, 2001), pp. 57–74.

    Google Scholar 

  14. C. Shen et al., Scripta Mater., 50 (7) (2004), p. 1023.

    Article  CAS  Google Scholar 

  15. C. Shen et al., Scripta Mater., 50 (7) (2004), p. 1029.

    Article  CAS  Google Scholar 

  16. A. Karma and W.J. Rappel, Phys. Rev. E. 53 (1996), p. 3017.

    Article  Google Scholar 

  17. A. Karma and W.J. Rappel, Phys. Rev. E, 57 (1998), p. 4323.

    Article  CAS  Google Scholar 

  18. K.R. Elder et al., Phys. Rev. E, 64 (2001), p. 021604.

    Article  CAS  Google Scholar 

  19. S.L. Chen et al., JOM. 55 (12) (2003), pp. 48–51.

    Article  CAS  Google Scholar 

  20. F.Y. Xie, Pan Titanium User Manual. Version 1 (Madison, WI: Compu Therm LLC. 2004).

    Google Scholar 

  21. Q. Chen and Y. Wang, in preparation (data available upon request).

  22. L. Kaufman, Computer Calculation of Phase Diagrams (New York: Academic Press, 1970).

    Google Scholar 

  23. Y.A. Chang et al., Progress in Materials Science, 49 (2004), pp. 313–345.

    Article  CAS  Google Scholar 

  24. U.R. Kattner, JOM, 49 (12) (1997), pp. 14–19.

    Article  CAS  Google Scholar 

  25. Y.M. Muggianu, M. Gambino, and L.P. Bros, J. Chim. Phus., 72 (1975), pp. 85–88.

    Google Scholar 

  26. H. Liang and Y.A. Chang, Light Metals 1999, ed. C.E. Eckert (Warrendale, PA: TMS, 1999), pp. 875–881.

    Google Scholar 

  27. J.W. Cahn and J.E. Hilliard, J. Chem. Phys., 28 (1958), p. 258.

    Article  CAS  Google Scholar 

  28. J.D. Gunton, M.S. Miguel, and P.S. Sahni, “The Dynamics of First-Order Phase Transitions,” Phase Transitions and Critical Phenomena, Vol. 8, ed. C. Domb and J.L. Lebowitz (New York: Academic Press, 1983).

    Google Scholar 

  29. A.A. Wheeler, G.B. McFadden, and W.J. Boettinger, Proc. R. Soc. London Ser. A, 452 (1996), p. 495.

    Article  CAS  Google Scholar 

  30. S.M. Allen and J.W. Cahn, Acta Metall, 27 (1979), p. 1085.

    Article  CAS  Google Scholar 

  31. J.D. van der Waals, Knoink. Akad. Weten. Amsterdam (Sec. 1) 1 (1893), p. 8 (in Dutch); English translation (with commentary): J.S. Rowlinson, J. Stat. Phys. 20 (1979), p. 197.

    Google Scholar 

  32. K. Wu, Y.A. Chang, and Y. Wang, Scripta mater., 50 (2004), pp. 1145–1150.

    Article  CAS  Google Scholar 

  33. I. Steinbach et al., Physica D, 94 (1996), pp. 135–147.

    Article  Google Scholar 

  34. B. Jonsson, ISIJ Int., 35 (11) (1995), pp. 1415–1421.

    CAS  Google Scholar 

  35. D. Furrer, private communication (2004).

  36. R. Castro and L. Seraphin, Mem. Sci. Rev. Met., 63 (1966), pp. 1025–1058.

    CAS  Google Scholar 

  37. C. Shen (Ph.D. thesis, Ohio State University, 2004).

  38. H.I. Aaronson and C. Wells, Trans. AIME, 206 (1956), pp. 1216–1223.

    Google Scholar 

  39. W.W. Mullins and R.F. Sekerka, J. Applied Physics, 34 (1963), p. 323.

    Article  CAS  Google Scholar 

  40. I. Loginova, J. Agren, and G. Arnberg, Acta Mater, 52 (13) (2004), p. 4055–4063.

    Article  CAS  Google Scholar 

  41. J.P. Simmons, C. Shen, and Y. Wang, Scripta Mater., 43 (2000), p. 935.

    Article  CAS  Google Scholar 

  42. O.M. Ivasishin et al., Mat. Sci. Eng. A-Struct., 337 (2002), p. 88.

    Article  Google Scholar 

  43. S.L. Semiatin, et al., Mat. Sci. Eng. A-Struct., 299 (2001), p. 225.

    Article  Google Scholar 

  44. N. Ma et al., Acta Mater., 52 (2004), p. 3869.

    Article  CAS  Google Scholar 

  45. W. Read and W. Shockley, Phys. Rev., 78 (1950), p. 275.

    Article  CAS  Google Scholar 

  46. Y. Huang and H.J. Humphreys, Acta Metall, 48 (2000), p. 2017.

    CAS  Google Scholar 

  47. N. Ma and Y. Wang, Materials Processing and Design: Modeling, Simulation and Applications: NUMIFORM 2004, 71 (2004), p. 1700.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Y.-Z. Wang, Department of Materials Science & Engineering, Ohio State University, 2041 College Road, Columbus, OH 43221, USA; (614) 292-0682; fax (614) 292-1537; e-mail wang.363@osu.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y.Z., Ma, N., Chen, Q. et al. Predicting phase equilibrium, phase transformation, and microstructure evolution in titanium alloys. JOM 57, 32–39 (2005). https://doi.org/10.1007/s11837-005-0112-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-005-0112-3

Keywords

Navigation