Skip to main content
Log in

The creep and fracture in nanostructured metals and alloys

  • Overview
  • Failure In Structural Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Bulk forms of nanostructured metals and alloys exhibit extraordinarily high strength and have been studied extensively for several decades. Research in recent years has focused on the unusually high creep as well as poor fracture toughness related to the unique microstructures of these materials. This article reviews some findings from the investigations on creep and fracture behavior in the last decade. It also summarizes the latest experimental results on nano-nickel, Cu, Pd, Al-Zr, and Zn in the subject areas as well as results from atomistic simulations and theoretical modeling on these subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Progress in Materials Science, 33 (1989), p. 223.

    Article  CAS  Google Scholar 

  2. V.G. Gryaznov and L.I. Trusov, Progress in Materials Science, 37 (1993), p. 289.

    Article  CAS  Google Scholar 

  3. C. Suryanarayana and F.H. Froes, Met. Trans. A, 23 (1992), p. 1071.

    Google Scholar 

  4. J.R. Weertman, et al., MRS Bulletin, 24 (2) (1999), p. 44.

    CAS  Google Scholar 

  5. E. Anderson, L. King, and J. Spreadborough, Trans. Metall. Soc. AIME, 242 (1968), p. 115.

    CAS  Google Scholar 

  6. A.W. Thompson, Acta metall., 23 (1975), p. 1337.

    Article  CAS  Google Scholar 

  7. A.W. Thompson, Acta metall., 25 (1977), p. 83.

    Article  CAS  Google Scholar 

  8. R.A. Masumura, P.M. Hazzledine, and C.S. Pande, Acta mater., 46 (1998), pp. 4527–4534.

    Article  CAS  Google Scholar 

  9. G.D. Hughes et al., Scripta metall., 20 (1986), p. 93.

    Article  CAS  Google Scholar 

  10. A.M. El Sherik et al., Scripta metall., 72 (1992), p. 1185.

    Google Scholar 

  11. G.W. Nieman, J.R. Weertman, and R.W. Siegel, Scripta metal., 23 (1989), p. 2013.

    Article  CAS  Google Scholar 

  12. C.P. Dogan et al., Nanostruct. Mater., 4 (1994), p. 631.

    Article  CAS  Google Scholar 

  13. J.S.C. Jang and C.C. Koch, Scripta metall., 24 (1990), p. 1599.

    Article  CAS  Google Scholar 

  14. K. Hayashi and H. Etoh, Metall. Trans. JIM, 309 (1989), p. 925.

    Google Scholar 

  15. T.R. Smith, Nanostruct. Mater., 5 (1995), p. 337.

    Article  CAS  Google Scholar 

  16. X.Y. Qin, X.J. Wu, and L.D. Zhang, Nanostruct. Mater., 5 (1995), p. 101.

    Article  CAS  Google Scholar 

  17. G.W. Nieman, J.R. Weertman, and R.W. Siegel, Nanostruct. Mater., 1 (1992), p. 185.

    Article  CAS  Google Scholar 

  18. V.Y. Gertsman et al., Acta mater., 42 (1994), p. 3539.

    Article  CAS  Google Scholar 

  19. P.G. Sanders, J.A. Eastman, and J.R. Weertman, Acta mater., 10 (1997), p. 4019.

    Article  Google Scholar 

  20. A. Chokshi et al., Scripta metall., 23 (1989), p. 1679.

    Article  CAS  Google Scholar 

  21. H. Hu and R.S. Cline, Trans. Metall. Soc. A.I.M.E., 242 (1968), p. 1013.

    CAS  Google Scholar 

  22. T.D. Shen and C.C. Koch, Nanostruct. Mater., 5 (1995), p. 615.

    Article  CAS  Google Scholar 

  23. R.Z. Valiev et al., Scripta metall., 27 (1992), p. 855.

    Article  CAS  Google Scholar 

  24. G. McMahon and U. Erb, Microstruct. Sci., 17 (1989), p. 447.

    CAS  Google Scholar 

  25. K. Lu, W.D. Wei, and J.T. Wang, Scripta metall., 24 (1990), p. 2319.

    Article  CAS  Google Scholar 

  26. N. Wang et al., Mater. Sci. Eng. A, 237 (1997), p. 150.

    Article  Google Scholar 

  27. J. Schiotz, F. DiTolla, and K.W. Jacobsen, Nature, 391 (1998), p. 561.

    Article  Google Scholar 

  28. H. Conrad and J. Narayan, Scripta mater., 42 (2000), pp. 1025–1030.

    Article  CAS  Google Scholar 

  29. N. Wang et al., Acta metall. mater., 43 (1995), pp. 519–528.

    Article  CAS  Google Scholar 

  30. J.C.M. Li and G.C.T. Liu, Phil. Mag., 15 (1967), p. 1059.

    CAS  Google Scholar 

  31. C.J. Youngdahl et al., Scripta mater., 44 (2001), pp. 1475–1478.

    Article  CAS  Google Scholar 

  32. W.W. Milligan et al., Nanostructured mater., 2 (1993), p. 267.

    Article  CAS  Google Scholar 

  33. K.S. Kumar et al., Acta mater., 51 (2003), pp. 387–405.

    Article  CAS  Google Scholar 

  34. T.G. Nieh and J. Wadsworth, Scripta metall. mater., 25 (1991), p. 955.

    Article  CAS  Google Scholar 

  35. A. Lasalmonie and J.L. Strudel, J. Mater. Sci., 21 (1986), p. 1837.

    Article  CAS  Google Scholar 

  36. S. Cheng, J.A. Spencer, and W.W. Milligan, Acta mater., 51 (2003), pp. 4505–4518.

    Article  CAS  Google Scholar 

  37. H.S. Kim, Y. Estrin, and M.B. Bush, Acta mater., 48 (2000), pp. 493–504.

    Article  CAS  Google Scholar 

  38. V. Yamakov et al., Acta mater., 50 (2002), p. 61.

    Article  CAS  Google Scholar 

  39. P. Keblinski, D. Wolf, and H. Gleiter, Interface Sci., 6 (1998), p. 205.

    Article  CAS  Google Scholar 

  40. H.V. Swygenhoven, M. Spaczer, and A. Caro, Acta mater., 47 (1999), p. 3117.

    Article  Google Scholar 

  41. A. Frøseth, H.V. Swygenhoven, and P.M. Derlet, Acta mater., 52 (2004), p. 2259.

    Article  CAS  Google Scholar 

  42. S.L. Frederiksen, K.W. Jacobsen, and J. Schiøtz, Acta mater., 52 (2004) pp. 5019–5029.

    Article  CAS  Google Scholar 

  43. L.I. Trusov et al., Phys. of Metals, 10 (1988), p. 104.

    CAS  Google Scholar 

  44. D. Jia et al., Scripta mater., 45 (2001), p. 613.

    Article  CAS  Google Scholar 

  45. F.D. Torre, H.V. Swygenhoven, and M. Victoria, Acta mater., 50 (2002), pp. 3957–3970.

    Article  Google Scholar 

  46. W.M. Yin, S.H. Whang, and R. Mirshams, Acta mater., 53 (2005), pp. 383–392; Weimin Yin (Ph.D. dissertation, Polytechnic University, Brooklyn, NY, 2003).

    Article  CAS  Google Scholar 

  47. H. Margolin, Acta mater., 46 (1998), p. 6305.

    Article  CAS  Google Scholar 

  48. M.A. Meyers and E. Ashworth, Phil. Mag. A, 46 (1982), p. 737.

    CAS  Google Scholar 

  49. P.S. Pao et al., MRS On-line Proceedings 740: Nanomaterials for Structural Applications, ed. C.C. Berndt et al. (Warrendale, PA: MRS, 2002), www.mrs.org/members/proceedings/fall2002/i/l1_4.pdf.

    Google Scholar 

  50. S.R. Agnew and J.R. Weertman, Mater. Sci. Eng. A, 244 (1998), p. 145.

    Article  Google Scholar 

  51. S.R. Agnew et al., J. Electronic Mater., 28 (1999), pp. 1038–1044.

    Article  CAS  Google Scholar 

  52. C.E. Feltner and C. Laird, Acta metall., 15 (1967), pp. 1621–1642.

    Article  CAS  Google Scholar 

  53. T. Hanlon, Y.-N. Kwon, and S. Suresh, Scripta mater., 49 (2003), pp. 675–680.

    Article  CAS  Google Scholar 

  54. R.C. Hugo et al., Acta mater., 51 (2003), pp. 1937–1943.

    Article  CAS  Google Scholar 

  55. C.H. Xiao et al., Mater. Sci. Eng., A301 (2001), p. 35.

    CAS  Google Scholar 

  56. P.G. Sanders et al., Nanostructured Mater., 9 (1997), pp. 433–440.

    Article  CAS  Google Scholar 

  57. B. Cai et al., Scripta mater., 45 (2001), p. 1407.

    Article  CAS  Google Scholar 

  58. B. Cai et al., Scripta mater., 41 (1999), p. 755.

    Article  CAS  Google Scholar 

  59. L. Lu, M.L. Sui, and K. Lu, Science, 287 (2000), p. 1463.

    Article  CAS  Google Scholar 

  60. W.M. Yin et al., Mater. Sci. Eng., A301 (2001), p. 18.

    CAS  Google Scholar 

  61. W.M. YIn and S.H. Whang, Scripta mater., 44 (2001), pp. 569–574.

    Article  CAS  Google Scholar 

  62. I. Kaur, W. Gust, and L. Kozma, Handbook of Grain and Interphase Boundary Diffusion Data (Stuttgart, Germany: Ziegler Press, 1989).

    Google Scholar 

  63. M.F. Ashby, Acta metall., 20 (1972), p. 887.

    Article  CAS  Google Scholar 

  64. E. Arzt, M.F. Ashby, and R.A. Verrall, Acta metall., 31 (1983), p. 1977.

    Article  CAS  Google Scholar 

  65. T.G. Langdon, Philos. Mag., 22 (1970), p. 689.

    Google Scholar 

  66. J.R. Spingarn and W.D. Nix, Acta metall., 27 (1979), p. 171.

    Article  CAS  Google Scholar 

  67. X. Liu et al., Scripta mater., 42 (2) (2000), p. 189.

    CAS  Google Scholar 

  68. U. Klement et al., Mater. Sci. Eng. A, 203A (1995), p. 177.

    Google Scholar 

  69. T.S. Ke, J. Appl. Phys., 20 (1949), p. 274.

    Article  CAS  Google Scholar 

  70. T.S. Ke, Metall. Mater. Trans. A, 30A (9) (1999), p. 2267.

    Article  Google Scholar 

  71. P.R. Howell and G.L. Dunlop, Proc. 1st Int. Conf. Creep and Fracture of Engineering Materials and Structures, ed. B. Wilshire and D.R.J. Owen (Swansea, U.K.: Pineridge Press, 1981), p. 127.

    Google Scholar 

  72. F. Gutierrez-Mora et al., Nanostruct. Mater., 11 (1999), p. 531.

    Article  CAS  Google Scholar 

  73. H. Gleiter, Acta metall., 27 (1979), p. 187.

    Article  Google Scholar 

  74. J.N. Cordea and J.W. Spretnak, Trans. Metall. Soc. A.I.M.E., 236 (1966), pp. 1685–1691.

    CAS  Google Scholar 

  75. M. Weller, J. Diehl, and H.E. Schaefer, Phil. Mag. A, 63 (1991), p. 527.

    CAS  Google Scholar 

  76. S. Okuda et al., J. Alloys Comp., 211–212 (1994), p. 494.

    Article  Google Scholar 

  77. E. Bonetti et al., Nanostruct. Mater., 10 (1998), pp. 745–753.

    Google Scholar 

  78. E. Bonetti et al., Nanostruct. Mater., 11 (1999), pp. 709–720.

    Article  CAS  Google Scholar 

  79. R.R. Mulyukov et al., Mat. Sci. Forum, 170–172 (1994), p. 159.

    Article  Google Scholar 

  80. E. Bonetti, L. Pasquini, and E. Sampaolesi, Nanostruct. Mater., 10 (1998), pp. 437–448.

    Article  CAS  Google Scholar 

  81. E. Bonetti and G. Valdre, Phil. Mag. B, 68 (1993), p. 967.

    CAS  Google Scholar 

  82. E. Bonetti and L. Pasquini, J. Electronic Materials, 28 (1999), pp. 1055–1061.

    Article  CAS  Google Scholar 

  83. E. Bonetti et al., J. Appl. Phys., 84 (1998), p. 4219.

    Article  CAS  Google Scholar 

  84. C. Zener, Phys. Rev., 60 (1941), p. 906.

    Article  Google Scholar 

  85. T.S. Ke, Phys. Rev., 71 (1947), p. 533.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact S.H. Whang, Polytechnic University of New York, Mechanical Engineering Department, Six MetroTech Center, Brooklyn, NY 11201.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, W., Whang, S.H. The creep and fracture in nanostructured metals and alloys. JOM 57, 63–70 (2005). https://doi.org/10.1007/s11837-005-0066-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-005-0066-5

Keywords

Navigation