Advertisement

JOM

, Volume 56, Issue 10, pp 58–63 | Cite as

The fundamentals of nanostructured materials processed by severe plastic deformation

  • Yuntian T. Zhu
  • Terence G. Langdon
Overview Nanomaterials By SPD

Abstract

Nanostructured materials produced by severe plastic deformation (SPD) are 100% dense, contamination-free, and sufficiently large for use in real commercial structural applications. These materials are found to have high strength, good ductility, superior superplasticity, a low friction coefficient, high wear resistance, enhanced high-cycle fatigue life, and good corrosion resistance. This article reviews the structures and properties of nanostructured materials produced by SPD and reports recent progress in determining the deformation mechanisms that lead to these superior mechanical properties.

Keywords

Ductility Fatigue Life Cold Rolling Severe Plastic Deformation Partial Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci., 45 (2000), p. 103.CrossRefGoogle Scholar
  2. 2.
    R. Birringer et al., Phys. Lett. A, 102 (1984), p. 365.CrossRefGoogle Scholar
  3. 3.
    R.W. Siegel, Fundamental Properties of Nanostructured Materials, ed. D. Fiorani and G. Sberveglieri (Singapore: World Scientific, 1993), pp. 3–19.Google Scholar
  4. 4.
    X. Zhang, H. Wang, and C.C. Koch, Rev. Adv. Mater. Sci., 6 (2004), p. 53.Google Scholar
  5. 5.
    T.C. Lowe and R.Z. Valiev, JOM, in this issue.Google Scholar
  6. 6.
    S.L. Semiatin, A. Salem, and M.J. Saran, JOM, in this issue.Google Scholar
  7. 7.
    V.V. Stolyarov et al., NanoStruct. Mater., 11 (1999), p. 947.CrossRefGoogle Scholar
  8. 8.
    H.G. Jiang et al., Mater. Sci. Eng., A290 (2000), p. 128.Google Scholar
  9. 9.
    R.Z. Valiev et al., J. Mater. Res., 17 (2002), p. 5.Google Scholar
  10. 10.
    A.P. Zhilyaev et al., Acta Mater., 51 (2003), p. 753.CrossRefGoogle Scholar
  11. 11.
    X.Z. Liao et al., Appl. Phys. Lett., 84 (2004), p. 592.CrossRefGoogle Scholar
  12. 12.
    X.Z. Liao et al., J. Appl. Phys., 96 (2004), p. 636.CrossRefGoogle Scholar
  13. 13.
    R.Z. Valiev et al., Scripta Mater., 37 (1997), p. 1945.CrossRefGoogle Scholar
  14. 14.
    S. Komura et al., Metall. Mater. Trans. A, 32A (2001), p. 707.CrossRefGoogle Scholar
  15. 15.
    S. Komura et al., Mater. Sci. Eng., A297 (2001), p. 111.Google Scholar
  16. 16.
    D.H. Shin et al., Metall. Mater. Trans. A, 35A (2004), p. 825.CrossRefGoogle Scholar
  17. 17.
    Z. Horita et al., Metall. Mater. Trans., 31A (2000), p. 691.CrossRefGoogle Scholar
  18. 18.
    X. Zhang et al., Appl. Phys. Lett., 81 (2002), p. 823.CrossRefGoogle Scholar
  19. 19.
    X.Z. Liao et al., Appl. Phys. Lett., 83 (2003), p. 632.CrossRefGoogle Scholar
  20. 20.
    D.H. Shin et al., Mater. Sci. Eng., A325 (2002), p. 31.Google Scholar
  21. 21.
    I.V. Alexandrov et al., Metall. Mater. Trans. A, 29 (1998), p. 2253.CrossRefGoogle Scholar
  22. 22.
    Y.T. Zhu et al., Metall. Mater. Trans., 32A (2001), p. 1559.CrossRefGoogle Scholar
  23. 23.
    J.Y. Huang et al., Acta Mater., 49 (2001), p. 1497.CrossRefGoogle Scholar
  24. 24.
    Y.T. Zhu et al., J. Mater. Res., 18 (2003), p. 1908.Google Scholar
  25. 25.
    C.C. Koch, Scripta Mat., 49 (2003), p. 657.CrossRefGoogle Scholar
  26. 26.
    Y.T. Zhu and X.Z. Liao, Nature Mater., 3 (2004), p. 351.CrossRefGoogle Scholar
  27. 27.
    F. Dalla Torre et al., Acta Mater., 52, 4819 (2004).CrossRefGoogle Scholar
  28. 28.
    V.V. Stolyarov et al., Mater. Sci. Eng., A303 (2002), p. 82.Google Scholar
  29. 29.
    D. Jia et al., Appl. Phys. Lett., 79 (2002), p. 611.CrossRefGoogle Scholar
  30. 30.
    V.V. Stolyarov et al., Mater. Sci. Eng., A343 (2003), p. 43.Google Scholar
  31. 31.
    Y.T. Zhu et al., J. Mater. Res., 18 (2003), p. 1011.CrossRefGoogle Scholar
  32. 32.
    Y.M. Wang et al., Adv. Mater., 16 (2004), p. 328.CrossRefGoogle Scholar
  33. 33.
    H. Van Swygenhoven, Science, 296 (2002), p. 66.CrossRefGoogle Scholar
  34. 34.
    V. Yamakov et al., Nature Mater., 1 (2002), p. 1.CrossRefGoogle Scholar
  35. 35.
    H. Van Swygenhoven, P.M. Derlet, and G. Frøseth, Nature Mater., 3 (2004), p. 399.CrossRefGoogle Scholar
  36. 36.
    X.Z. Liao et al., Appl. Phys. Lett., 83 (2003), p. 5062.CrossRefGoogle Scholar
  37. 37.
    M. Chen et al., Science, 300 (2003), p. 1275.CrossRefGoogle Scholar
  38. 38.
    X.Z. Liao et al., Appl. Phys. Lett., 84 (2004), p. 3564.CrossRefGoogle Scholar
  39. 39.
    D.L. Medlin, S.M. Foiles, and D. Cohen, Acta Mater., 49 (2001), p. 3689.CrossRefGoogle Scholar
  40. 40.
    Y.H. Zhao et al., Acta Mater. (in press).Google Scholar
  41. 41.
    A.J. Barnes, Mater. Sci. Forum, 357 (2001), p. 3.Google Scholar
  42. 42.
    T.G. Langdon, Acta Metall. Mater., 42 (1994), p. 2437.CrossRefGoogle Scholar
  43. 43.
    S.X. McFadden et al., Nature, 398 (1999), p. 884.Google Scholar
  44. 44.
    S.-M. Lee and T.G. Langdon, Mater. Sci. Forum, 357–359 (2001) p. 321.CrossRefGoogle Scholar
  45. 45.
    C. Xu et al., Acta Mater., 51 (2003), p. 6139.CrossRefGoogle Scholar
  46. 46.
    A.P. Zhilyaev et al., Scripta Mater., 46 (2002), p. 575.CrossRefGoogle Scholar
  47. 47.
    A.P. Zhilyaev et al., Russian Metall. (Metally), 2004 (1) (2004), p. 60.Google Scholar
  48. 48.
    K. Harada et al., Scripta Mater., 49 (2003), p. 367.CrossRefGoogle Scholar
  49. 49.
    B.B. Straimal et al., Defect Diffusion Forum, 217–217 (2003), p. 307.Google Scholar
  50. 50.
    M.Yu. Gutkin, I.A. Ovid’ko, and N.V. Skiba, J. Phys. D: Appl. Phys., 36 (2003), p. L47.Google Scholar
  51. 51.
    M. Kamachi et al., Mater. Sci. Eng., A361 (2003), p. 258.Google Scholar
  52. 52.
    H. Akamatsu et al., Scripta Mater., 44 (2001), p. 759.CrossRefGoogle Scholar
  53. 53.
    T. Tanaka et al., Scripta Mater., 49 (2003), p. 361.CrossRefGoogle Scholar
  54. 54.
    A. Vinogradov and S. Hashimoto, Adv. Eng. Mater., 5 (2003), p. 351.CrossRefGoogle Scholar
  55. 55.
    R.Z. Valiev. V.V. Stolyarov, and Y.T. Zhu, unpublished data (2002).Google Scholar
  56. 56.
    V.V. Stolyarov et al., Mater. Sci. Eng., A371 (2004), p. 313.Google Scholar
  57. 57.
    Z.B. Wang et al., Mater. Sci. Eng., A352 (2003), p. 144.Google Scholar
  58. 58.
    A. Balyanov et al., Scripta Mater., 51 (2004), p. 225.CrossRefGoogle Scholar

Copyright information

© TMS 2004

Authors and Affiliations

  • Yuntian T. Zhu
    • 1
  • Terence G. Langdon
    • 2
  1. 1.the Materials Science and Technology Division at Los Alamos National LaboratoryNew Mexico
  2. 2.the Departments of Aerospace & Mechanical Engineering and Materials Science at the University of Southern CaliforniaLos Angeles

Personalised recommendations