The fundamentals of nanostructured materials processed by severe plastic deformation
Overview Nanomaterials By SPD
- 1.1k Downloads
- 105 Citations
Abstract
Nanostructured materials produced by severe plastic deformation (SPD) are 100% dense, contamination-free, and sufficiently large for use in real commercial structural applications. These materials are found to have high strength, good ductility, superior superplasticity, a low friction coefficient, high wear resistance, enhanced high-cycle fatigue life, and good corrosion resistance. This article reviews the structures and properties of nanostructured materials produced by SPD and reports recent progress in determining the deformation mechanisms that lead to these superior mechanical properties.
Keywords
Ductility Fatigue Life Cold Rolling Severe Plastic Deformation Partial Dislocation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci., 45 (2000), p. 103.CrossRefGoogle Scholar
- 2.R. Birringer et al., Phys. Lett. A, 102 (1984), p. 365.CrossRefGoogle Scholar
- 3.R.W. Siegel, Fundamental Properties of Nanostructured Materials, ed. D. Fiorani and G. Sberveglieri (Singapore: World Scientific, 1993), pp. 3–19.Google Scholar
- 4.X. Zhang, H. Wang, and C.C. Koch, Rev. Adv. Mater. Sci., 6 (2004), p. 53.Google Scholar
- 5.T.C. Lowe and R.Z. Valiev, JOM, in this issue.Google Scholar
- 6.S.L. Semiatin, A. Salem, and M.J. Saran, JOM, in this issue.Google Scholar
- 7.V.V. Stolyarov et al., NanoStruct. Mater., 11 (1999), p. 947.CrossRefGoogle Scholar
- 8.H.G. Jiang et al., Mater. Sci. Eng., A290 (2000), p. 128.Google Scholar
- 9.R.Z. Valiev et al., J. Mater. Res., 17 (2002), p. 5.Google Scholar
- 10.A.P. Zhilyaev et al., Acta Mater., 51 (2003), p. 753.CrossRefGoogle Scholar
- 11.X.Z. Liao et al., Appl. Phys. Lett., 84 (2004), p. 592.CrossRefGoogle Scholar
- 12.X.Z. Liao et al., J. Appl. Phys., 96 (2004), p. 636.CrossRefGoogle Scholar
- 13.R.Z. Valiev et al., Scripta Mater., 37 (1997), p. 1945.CrossRefGoogle Scholar
- 14.S. Komura et al., Metall. Mater. Trans. A, 32A (2001), p. 707.CrossRefGoogle Scholar
- 15.S. Komura et al., Mater. Sci. Eng., A297 (2001), p. 111.Google Scholar
- 16.D.H. Shin et al., Metall. Mater. Trans. A, 35A (2004), p. 825.CrossRefGoogle Scholar
- 17.Z. Horita et al., Metall. Mater. Trans., 31A (2000), p. 691.CrossRefGoogle Scholar
- 18.X. Zhang et al., Appl. Phys. Lett., 81 (2002), p. 823.CrossRefGoogle Scholar
- 19.X.Z. Liao et al., Appl. Phys. Lett., 83 (2003), p. 632.CrossRefGoogle Scholar
- 20.D.H. Shin et al., Mater. Sci. Eng., A325 (2002), p. 31.Google Scholar
- 21.I.V. Alexandrov et al., Metall. Mater. Trans. A, 29 (1998), p. 2253.CrossRefGoogle Scholar
- 22.Y.T. Zhu et al., Metall. Mater. Trans., 32A (2001), p. 1559.CrossRefGoogle Scholar
- 23.J.Y. Huang et al., Acta Mater., 49 (2001), p. 1497.CrossRefGoogle Scholar
- 24.Y.T. Zhu et al., J. Mater. Res., 18 (2003), p. 1908.Google Scholar
- 25.C.C. Koch, Scripta Mat., 49 (2003), p. 657.CrossRefGoogle Scholar
- 26.Y.T. Zhu and X.Z. Liao, Nature Mater., 3 (2004), p. 351.CrossRefGoogle Scholar
- 27.F. Dalla Torre et al., Acta Mater., 52, 4819 (2004).CrossRefGoogle Scholar
- 28.V.V. Stolyarov et al., Mater. Sci. Eng., A303 (2002), p. 82.Google Scholar
- 29.D. Jia et al., Appl. Phys. Lett., 79 (2002), p. 611.CrossRefGoogle Scholar
- 30.V.V. Stolyarov et al., Mater. Sci. Eng., A343 (2003), p. 43.Google Scholar
- 31.Y.T. Zhu et al., J. Mater. Res., 18 (2003), p. 1011.CrossRefGoogle Scholar
- 32.Y.M. Wang et al., Adv. Mater., 16 (2004), p. 328.CrossRefGoogle Scholar
- 33.H. Van Swygenhoven, Science, 296 (2002), p. 66.CrossRefGoogle Scholar
- 34.V. Yamakov et al., Nature Mater., 1 (2002), p. 1.CrossRefGoogle Scholar
- 35.H. Van Swygenhoven, P.M. Derlet, and G. Frøseth, Nature Mater., 3 (2004), p. 399.CrossRefGoogle Scholar
- 36.X.Z. Liao et al., Appl. Phys. Lett., 83 (2003), p. 5062.CrossRefGoogle Scholar
- 37.M. Chen et al., Science, 300 (2003), p. 1275.CrossRefGoogle Scholar
- 38.X.Z. Liao et al., Appl. Phys. Lett., 84 (2004), p. 3564.CrossRefGoogle Scholar
- 39.D.L. Medlin, S.M. Foiles, and D. Cohen, Acta Mater., 49 (2001), p. 3689.CrossRefGoogle Scholar
- 40.Y.H. Zhao et al., Acta Mater. (in press).Google Scholar
- 41.A.J. Barnes, Mater. Sci. Forum, 357 (2001), p. 3.Google Scholar
- 42.T.G. Langdon, Acta Metall. Mater., 42 (1994), p. 2437.CrossRefGoogle Scholar
- 43.S.X. McFadden et al., Nature, 398 (1999), p. 884.Google Scholar
- 44.S.-M. Lee and T.G. Langdon, Mater. Sci. Forum, 357–359 (2001) p. 321.CrossRefGoogle Scholar
- 45.C. Xu et al., Acta Mater., 51 (2003), p. 6139.CrossRefGoogle Scholar
- 46.A.P. Zhilyaev et al., Scripta Mater., 46 (2002), p. 575.CrossRefGoogle Scholar
- 47.A.P. Zhilyaev et al., Russian Metall. (Metally), 2004 (1) (2004), p. 60.Google Scholar
- 48.K. Harada et al., Scripta Mater., 49 (2003), p. 367.CrossRefGoogle Scholar
- 49.B.B. Straimal et al., Defect Diffusion Forum, 217–217 (2003), p. 307.Google Scholar
- 50.M.Yu. Gutkin, I.A. Ovid’ko, and N.V. Skiba, J. Phys. D: Appl. Phys., 36 (2003), p. L47.Google Scholar
- 51.M. Kamachi et al., Mater. Sci. Eng., A361 (2003), p. 258.Google Scholar
- 52.H. Akamatsu et al., Scripta Mater., 44 (2001), p. 759.CrossRefGoogle Scholar
- 53.T. Tanaka et al., Scripta Mater., 49 (2003), p. 361.CrossRefGoogle Scholar
- 54.A. Vinogradov and S. Hashimoto, Adv. Eng. Mater., 5 (2003), p. 351.CrossRefGoogle Scholar
- 55.R.Z. Valiev. V.V. Stolyarov, and Y.T. Zhu, unpublished data (2002).Google Scholar
- 56.V.V. Stolyarov et al., Mater. Sci. Eng., A371 (2004), p. 313.Google Scholar
- 57.Z.B. Wang et al., Mater. Sci. Eng., A352 (2003), p. 144.Google Scholar
- 58.A. Balyanov et al., Scripta Mater., 51 (2004), p. 225.CrossRefGoogle Scholar
Copyright information
© TMS 2004