Skip to main content
Log in

Forming nanostructured hypereutectic aluminum via high-velocity oxyfuel spray deposition

  • Research Summary
  • Nanoscale Surfaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Al-Si alloys are widely used in aerospace and automobile industries due to their high strength-to-weight ratio and superior wear and corrosion resistance. Increasing the percentage of silicon in these alloys improves their wear resistance and strength considerably, but impairs their ductility. This problem can be overcome by refining the microstructure of hypereutectic alloys by varying the processing conditions. High velocity oxyfuel (HVOF) spray deposition is an efficient process to deposit nanostructured Al-Si coatings and near-net-shape spray-formed structures. This article deals with the microstructural evolution in an Al-21wt.% Si alloy processed through HVOF spraying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gupta and S. Ling, Journal of Alloys and Compounds, 287 (1/2) (1999), pp. 284–294.

    Article  CAS  Google Scholar 

  2. J.L. Estrada and J. Duszczyk, Journal of Materials Science, 25 (1990), pp. 886–904.

    CAS  Google Scholar 

  3. S. Tomida et al., Surface and Coatings Technology, 169–170 (2003), pp. 468–471.

    Article  Google Scholar 

  4. Rong Zhang et al., Science and Technology of Advanced Materials, 2 (1) (2001), pp. 3–5.

    Article  CAS  Google Scholar 

  5. K. Matsuura et al., Materials Chemistry and Physics, 81 (2003), pp. 393–395.

    Article  CAS  Google Scholar 

  6. A. Agarwal and T. McKechnie, Advanced Materials & Processes, 159 (9) (2001), pp. 44–46.

    CAS  Google Scholar 

  7. T.S. Srivatsan et al., Processing and Fabrication of Advanced Materials V, ed. T.S. Srivatsan and J.J. Moore (Warrendale, PA: TMS, 1996), pp. 122–144.

    Google Scholar 

  8. T. Kim et al., Materials Science and Engineering A, 304–306 (2001), pp. 617–620.

    Article  Google Scholar 

  9. X. Baiqing et al., Journal of Materials Processing Technology, 137 (1/3) (2003), pp. 183–186.

    Article  Google Scholar 

  10. F. Wang et al., Journal of Materials Processing Technology, 137 (1/3) (2003), pp. 191–194.

    Article  CAS  Google Scholar 

  11. R. Dasgupta, Journal of Materials Processing Technology, 72 (3) (1997), pp. 380–384.

    Article  Google Scholar 

  12. R.M. Gomes et al., The International Journal of Powder Metallurgy, 36 (2) (2000), pp. 57–64.

    CAS  Google Scholar 

  13. K. Nogita and A.K. Dahle, Materials Characterization, 46 (4) (2001), pp. 305–310.

    Article  CAS  Google Scholar 

  14. H. Herman and S. Sampath, Metallurgical and Protective Coatings, ed. K.H. Stern (London: Chapman and Hall, 1996), pp. 261–289.

    Google Scholar 

  15. P. Fauchais, A. Vardelle, and B. Dussoubs, J. of Therm. Spray Techn., 10 (1) (2001), pp. 44–66.

    Article  CAS  Google Scholar 

  16. V.V. Sobolev and J.M. Guilemany, Materials Letters, 25 (5/6) (1995), pp. 285–289.

    Article  CAS  Google Scholar 

  17. C. Verdon, A. Karimi, and J.-L. Martin, Materials Science and Engineering A, 246, (1/2) (1998), pp. 11–24.

    Article  Google Scholar 

  18. Arvind Agarwal, Tim McKechnie, and S. Seal, J. Therm. Spray Tech., 12 (3) (2003), pp. 350–359.

    Article  CAS  Google Scholar 

  19. A. Agarwal and T. McKechnie, NASA 5-0008, NASA-GSFC (Greenbelt, MD: NASA, 2000).

    Google Scholar 

  20. R. Wang, W. Lu, and L.M. Hogan, Journal of Crystal Growth, 207 (1/2) (1999), pp. 43–54.

    Article  CAS  Google Scholar 

  21. Y. Fuxiao et al., Materials Science & Engineering A, 304–306 (2001), pp. 621–626.

    Article  Google Scholar 

  22. B. Yang, F. Wang, and J.S. Zhang, Acta Materialia, 51 (2003), pp. 4977–4989.

    Article  CAS  Google Scholar 

  23. W.C. Oliver and G.M. Pharr, Journal of Materials Research, 7 (6) (1992), pp. 1564–1583.

    CAS  Google Scholar 

  24. TAPP Version 2.2 (Hamilton, OH: ES Microware, 1990).

  25. K. Nakata and M. Ushio, Surface and Coatings Technology, 142–144 (2/3) (2001), pp. 277–282.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

T. Laha is pursuing his doctoral degree in the same department.

For more information, contact A. Agarwal, Florida International University, 10555 West Flagler Street, CEAS 3464, Department of Mechanical and Materials Engineering, Miami, Florida 33174; agarwala@fiu.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laha, T., Agarwal, A. & McKechnie, T. Forming nanostructured hypereutectic aluminum via high-velocity oxyfuel spray deposition. JOM 56, 54–56 (2004). https://doi.org/10.1007/s11837-004-0274-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-004-0274-4

Keywords

Navigation