Skip to main content
Log in

Chromium and chromium-based alloys: Problems and possibilities for high-temperature service

  • Overview
  • Beyond Ni-Based Superalloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article presents an overview of publications on mechanical properties of chromium and chromium-based alloys, with particular emphasis on ductility at low temperature and strength at high temperature. Analysis of rather scattered data suggests that a chromium or chromium-based alloy can be ductilized at ambient temperature and is quite capable of being strengthened to high levels at high temperature. A new composition design and process would open new opportunities for chromium-based alloys as structural materials used at temperatures up to 1,300°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Sully, Chromium, 1st ed. (London: Butterworths Scientific Publications, 1954).

    Google Scholar 

  2. C.T. Sims, “The Case for Chromium,” J. Metals, 15 (2) (1963), pp. 127–132.

    CAS  Google Scholar 

  3. W.J. Kroll, “Research on Chromium in America,” Ductile Chromium and its Alloys (Materials Park, OH: ASM, 1957), pp. 4–13.

    Google Scholar 

  4. A.H. Sully, “Research on Chromium in Europe,” Ductile Chromium and its Alloys (Materials Park, OH: ASM, 1957), pp. 14–26.

    Google Scholar 

  5. H.L. Wain, “Research on Chromium in Australia,” Ductile Chromium and its Alloys (Materials Park, OH: ASM, 1957), pp. 27–57.

    Google Scholar 

  6. W.D. Klopp, “Recent Developments in Chromium and Chromium Alloys,” J. Metals, 21 (11) (1969), pp. 23–32.

    CAS  Google Scholar 

  7. M. Takeyama and C.T. Liu, “Microstructure and Mechanical Properties of Laves-phase Alloys Based on Cr2Nb,” Mater. Sci. Eng., A132 (1991), pp. 62–66.

    Google Scholar 

  8. K. Chen, S.M. Allen, and J.D. Livingstone, “Morphology, Deformation, and Defect Structures of TiCr2 in Ti-Cr Alloys,” High Temperature Order Intermetallic Alloys V (Pittsburgh, PA: MRS, 1993), pp. 373–378.

    Google Scholar 

  9. K.S. Ravichandran, D.B. Miracle, and M.G. Mendiratta, “Microstructure and Mechanical Behavior of Cr-Cr2Hf in-situ Intermetallic Composites,” Metall. Mater. Trans., A27 (1996), pp. 2583–2592.

    Article  Google Scholar 

  10. B.P. Bewlay et al., “Microstructural and Crystallographic Relationships in Directionally Solidified Nb-Cr2Nb and Cr-Cr2Nb Eutectics,” Acta. Metall., 42 (1994), pp. 2869–2878.

    Article  CAS  Google Scholar 

  11. M. Asahina et al., “High-Temperature Mechanical Properties of High-Purity 70 mass% Cr-Fe Alloy,” Phys. State. Sol., 189 (1997), pp. 87–96.

    Article  Google Scholar 

  12. Y. Ro et al., “Development of Cr-base Alloys and Their Compressive Properties,” Scr. Metall., 46 (2002), pp. 331–335.

    Article  CAS  Google Scholar 

  13. A.H. Sully, E.A. Brandes, and K.W. Mitchell, “The Effect of Temperature and Purity on the Ductility and Other Properties of Chromium,” J. Inst. Metals, 81 (1952–53), pp. 585–597.

    Google Scholar 

  14. H.L. Wain, F. Henderson, and S.T.M. Johnstone, “A Study of the Room-Temperature Ductility of Chromium,” J. Inst. Metals, 83 (1954–55), pp. 133–142.

    CAS  Google Scholar 

  15. F. Henderson, S.T. Quaass, and H. L. Wain, “The Fabrication of Chromium and Some Dilute Chromium-base Alloys,” J. Inst. Metals, 83 (1954–55), pp. 126–132.

    CAS  Google Scholar 

  16. W.H. Smith and A.U. Seybolt, “The Effect of Impurity on the Ductility of Chromium,” Ductile Chromium and its Alloys (Materials Park, OH: ASM, 1957), pp. 169–179.

    Google Scholar 

  17. D.J. Maykuth and R.I. Jaffee, “Influence of Chromium Metal Purity on the Properties of Chromium Alloys,” Ductile Chromium and its Alloys (Materials Park, OH: ASM, 1957), pp. 229–246.

    Google Scholar 

  18. R.E. Cairns and N.J. Grant, “The Effects of Carbon, Nitrogen, Oxygen and Sulfur on the Ductile-Brittle Fracture Temperature of Chromium,” Trans AIME, 230 (5) (1964), pp. 1150–1159.

    CAS  Google Scholar 

  19. K.E. Solie and O.N. Carlson, “The Effect of Nitrogen on the Brittle-Ductile Transition of the Chromium,” Trans. AIME, 230 (3) (1964), pp. 480–485.

    CAS  Google Scholar 

  20. H.L. Wain et al., “Further Observations on the Ductility of Chromium,” J. Inst. Metals, 86 (1957–58), pp. 281–288.

    Google Scholar 

  21. C.W. Weaver, “Tensile Properties of Annealed Chromium Between—196 and 900°C,” J. Inst. Metals, 89 (1960–61), pp. 385–390.

    Google Scholar 

  22. E.A. Brandes and H.E.N. Stone, “The Properties of Extruded Chromium,” J. Inst. Metals, 81 (1958–59), pp. 42–48.

    Google Scholar 

  23. R.C. Tucker, T.E. Scott, and O.N. Carlson, “Effects of Heat Treatment on Hardness and Ductility of Chromium-Nitrogen Alloys,” J. Less-Common Metals, 24 (1971), pp. 405–418.

    Article  CAS  Google Scholar 

  24. T. Mills, “The Solubility of Nitrogen in Solid Chromium,” J. Less-Common Metals, 23 (1971), pp. 317–324.

    Article  CAS  Google Scholar 

  25. A. Gilbert and M.J. Klein, “The Effect of Cooling Rate on the Ductility-Brittle Bend-Transition Temperature of Chromium,” Acta Met., 14 (4) (1966), pp. 541–543.

    Article  CAS  Google Scholar 

  26. D.J. Maykuth et al., “A Metallurgical Evaluation of Iodide Chromium,” J. Electrochem. Soc., 102 (1955), pp. 316–331.

    Article  CAS  Google Scholar 

  27. D.J. Maykuth and R.I. Jaffee, “The Mechanical Properties of Swaged Iodide-Base Chromium and Chromium Alloys,” Trans. Amer. Soc. Metals, 49 (1957), pp. 948–958.

    Google Scholar 

  28. A. Gilbert and B.C. Allen, “The Notch-Impact Behavior of Chromium and a Chromium-35at% Rhenium Alloy,” J. Inst. Metals, 93 (1964–65), pp. 529–535.

    Google Scholar 

  29. F.E. Block, P.C. Good, and G. Asai, “Electrodeposition of High-Purity Chromium,” J. Electrochem. Soc., 106 (1959), pp. 43–47.

    Article  CAS  Google Scholar 

  30. A. Gilbert, C.N. Reid, and G.T. Hahn, “Observation on the Fracture of Chromium,” J. Inst. Metals, 92 (1963–64), pp. 351–356.

    Google Scholar 

  31. R.E. Hook, A.M. Adair, and H.A. Lipsitt, “Observation on the Ductility and Fracture of Recrystallized Chromium,” Trans. Met. AIME, 221 (1961), pp. 409–411.

    CAS  Google Scholar 

  32. N.V. Agee, V.N. Bykov, and V.A. Trapeznikov, Sov. Probl. Met., (1958), pp. 462–469.

  33. C.W. Weaver and K.A. Gross, “X-ray Examination of Brittle Fractures in Extruded Chromium,” J. Appl. Phys., 31 (1960), pp. 626–631.

    Article  CAS  Google Scholar 

  34. R.E. Hook and A.M. Adair, “On the Recrystallization Embrittle of Chromium,” Trans. Met. AIME., 227 (1963), pp. 151–159.

    CAS  Google Scholar 

  35. R.I. Garrod and H.L. Wain, “Dislocation Arrangements and Brittleness in Chromium,” J. Less-Common Metals, 9 (1965), pp. 81–94.

    Article  CAS  Google Scholar 

  36. A. Ball et al., “Tensile Fracture Characteristics of Heavily Drawn Chromium,” Phil. Mag. A, 21 (1970), pp. 701–712.

    Google Scholar 

  37. M.J. Marcinkowski and H.A. Lipsitt, “The Plastic Deformation of Chromium at Low Temperature,” Acta Met., 10 (1962), pp. 95–111.

    Article  CAS  Google Scholar 

  38. B.A. Wilcox, N.D. Veigel, and A.H. Clauer, “Ductile-Brittle Transition of Thoriated Chromium,” Met. Trans., 3 (1972), pp. 273–283.

    Article  CAS  Google Scholar 

  39. N.E. Ryan, “An Appraisal of Possible Scavenger Elements for Chromium and Chromium Alloys,” J. Less-Common Metals, 6 (1964), pp. 21–35.

    Article  Google Scholar 

  40. O.N. Carlson, L.L. Sherwood, and F.A. Schmidt, “The Effect of Low Percentage Alloying Addition on the Ductility of Iodide Chromium,” J. Less-Common Metals, 6 (1964), pp. 439–450.

    Article  CAS  Google Scholar 

  41. C.S. Landau, H.T. Greenaway, and A.R. Edwards, “Some Properties of Chromium and Chromium-Tungsten Alloys,” J. Inst. Metals, 89 (1960–61), pp. 97–101.

    Google Scholar 

  42. F. Henderson, S.T.M. Johnston, and H.L. Wain, “The Effect of Nitride-Formers upon the Ductile-Brittle Transition in Chromium,” J. Inst. Met., 92 (1964–65), pp. 111–117.

    Google Scholar 

  43. L. Bewer and H. Haraldsen, “The Thermodynamic Stability of Refractory Borides,” J. Electrochem. Soc., 102 (1955), pp. 399–406.

    Article  Google Scholar 

  44. J.L. Arnold and W.C. Hagel, “The Nitridation of Cr and Cr-Ti Alloys,” Metall. Trans., 3 (1972), pp. 1471–1477.

    Article  CAS  Google Scholar 

  45. P. Peshev, G. Bliznakov, and L. Leyarovska, “On the Preparation of Some Chromium, Molybdenum, and Tungsten Borides,” J. Less-Common Metals, 13 (1967), pp. 241–247.

    Article  CAS  Google Scholar 

  46. E.P. Abrahamson and N.J. Grant, “Brittle to Ductile Transition Temperatures of Binary Chromium-Base Alloys,” Trans. ASM, 50 (1958), pp. 705–721.

    Google Scholar 

  47. C.S. Wukusick, “The Rhenium Ductilizing Effect,” Refractory Metals and Alloys IV—Research and Development (New York: Gordon and Breach Science Publishers, 1967), pp. 231–245.

    Google Scholar 

  48. W.D. Klopp, “A Review of Chromium, Molybdenum and Tungsten Alloys,” J. Less-Common Met., 42 (1975), pp. 261–278.

    Article  CAS  Google Scholar 

  49. C.N. Reid and A. Gilbert, “Dislocation Structure in Chromium, Chromium-Rhenium and Chromium-Iron Alloys,” J. Less-Common Met., 10 (1966), pp. 77–90.

    Article  CAS  Google Scholar 

  50. J.R. Stephens and W.R. Witzke, “Alloy Softening in Group VIA Metals Alloyed with Rhenium,” J. Less-Common. Met., 23 (1971), pp. 325–342.

    Article  CAS  Google Scholar 

  51. C.S. Wukusick, Research on Chromium-Base Alloys Exhibiting High-Temperature Strength, Low-Temperature Ductility, and Oxidation Resistance, ASD-TDR-63-493, General Electric Co. (June 1963).

  52. W.O. Binder and H.R. Spendelow, “The Influence of Chromium on the Mechanical Properties of Plain Cr Steel,” Trans. ASM, 43 (1951), pp. 759–777.

    Google Scholar 

  53. J.R. Stephens and W.D. Klopp, “Enhanced Ductility in Binary Chromium Alloys,” Trans. AIME, 242 (1968), pp. 1837–1843.

    Google Scholar 

  54. B.C. Allen and R.I. Jaffee, “The Hardness Behavior of Chromium Alloyed with Group IVA to VIII Transition Metals,” Trans. ASM, 56 (1963), pp. 387–402.

    CAS  Google Scholar 

  55. R.J. Arsenault, “The Double-Kink Model for Low-Temperature Deformation of B.C.C. Metals and Solid Solution,” Acta Met., 15 (1967), pp. 501–511.

    Article  CAS  Google Scholar 

  56. W.A. Soffa and K.L. Moazed, “A Field-Ion Microscopy Study of a Tungsten-3at% Rhenium Alloy: Streak Contrast Effects,” J. Less-Common Met., 14 (1968), pp. 211–216.

    Article  CAS  Google Scholar 

  57. J.A. Roger and A.R. Brown, “The Development of Cr-base Alloys for Use at High Temperature,” Met. Mater., 1 (1967), pp. 246–258.

    Google Scholar 

  58. F.P. Bullen et al., “The Effect of Hydrostatic Pressure on Brittleness in Chromium,” Phil. Mag., 9 (1964), pp. 803–815.

    CAS  Google Scholar 

  59. K.E. Solie and O.N. Carlson, “The Effect of Nitrogen on the Brittle-Ductile Transition of Chromium,” Trans. AIME, 230 (1964), pp. 480–485.

    CAS  Google Scholar 

  60. W.H. Smith, “Solid Solubility of Carbon in Chromium,” Trans. AIME, 209 (1957), pp. 47–49.

    Google Scholar 

  61. J.P. Guha and D. Kolar, “The Systems TiC-Cr and ZrC-Cr,” J. Less-Common Metals, 31 (1973), pp. 331–343.

    Article  Google Scholar 

  62. N.E. Ryan, “The Formation, Stability and Influence of Carbide Dispersions in Chromium,” J. Less-Common Metals, 11 (4) (1966), pp. 221–248.

    Article  CAS  Google Scholar 

  63. R.H. Buck and R.B. Waterhouse, “The Reaction between Chromium and Nitrogen at 1000–1300°C,” J. Less-Common Metals, 6 (1964), pp. 36–50.

    Article  CAS  Google Scholar 

  64. J.R. Stephens and W.D. Klopp, “Exploratory Study of Silicide, Aluminide and Boride Coatings for Nitridation/Oxidation Protection of Chromium Alloys,” Trans. AIME, 245 (1969), pp. 1975–1981.

    CAS  Google Scholar 

  65. G.S. Ansell, “The Mechanism of Dispersion Strengthening: A Review,” Oxide Dispersion Strengthening, ed. G.S. Ansell, T.D. Cooper, and F.V. Lenel (New York: Gordon and Breach Science Publishers, 1968), pp. 61–141.

    Google Scholar 

  66. D.N. Williams et al., “Oxidation Protection of a Chromium Alloy by Nickel-Alloy Claddings,” J. Less-Common Metals, 24 (1971), pp. 41–54.

    Article  CAS  Google Scholar 

  67. J.R. Stephens, “Exploratory Investigation of Y, La, and Hf Coatings for Nitridation Protection of Chromium Alloys,” Metall. Trans., 3 (1972), pp. 2075–2086.

    Article  CAS  Google Scholar 

  68. C.S. Tedmon, “The High-Temperature Oxidation of Ductile Cr-Ru Alloys,” J. Less-Common Metals, 10 (1966), pp. 301–311.

    Article  CAS  Google Scholar 

  69. R.E. Lawn, F.G. Wilson, and C.D. Desforges, “Observation on the Oxidation and Nitridation Behaviour of Oxide-Dispersed Chromium,” J. Less-Common Metals, 58 (1978), pp. 107–110.

    Article  CAS  Google Scholar 

  70. W.C. Hagel, “Factors Controlling the High-Temperature Oxidation of Chromium,” Trans. Mater., 56 (1963), pp. 583–599.

    CAS  Google Scholar 

  71. L.L. Sherwood, F.A. Schmidt, and O.N. Carlson, “The Effect of Composition, Crystalline Condition and Thermal History on the Bend Transition Temperature of Chromium Alloys,” Trans. ASM, 58 (1965), pp. 403–410.

    CAS  Google Scholar 

  72. G.R. Wilms, “The Tensile Properties of Some Extruded Chromium Alloys Between 800°C and 1000°C,” J. Less-Common Metals, 6 (1964), pp. 169–183.

    Article  CAS  Google Scholar 

  73. A.J. Ardell, “Further Application of the Theory of Particle Coarsening,” Acta Met., 15 (1967), pp. 1772–1775.

    Article  CAS  Google Scholar 

  74. W.H. Chang, “Effect of Titanium and Zirconium on Microstructure and Tensile Properties of Carbide-Strengthened Molybdenum Alloys,” Trans. ASM, 57 (1964), pp. 527–553.

    CAS  Google Scholar 

  75. A.M. Filippi, “Stability of Reactive and Refractory Metal Borides in Ternary Chromium-Base Alloys,” J. Less-Common Metals, 30 (1973), pp. 153–158.

    Article  CAS  Google Scholar 

  76. Y.A. Chang and D. Naujock, “The Relative Stabilities of Cr23C4, Cr7C3, and Cr3C2 and Phase Relationships in Ternary Cr-Mo-C System,” Metall. Trans., 3 (1972), pp. 1693–1972.

    CAS  Google Scholar 

  77. J.W. Pugh, “The Tensile and Stress-Rupture Properties of Chromium,” Trans. ASM, 50 (1958), pp. 1072–1080.

    Google Scholar 

  78. G.R. Wilms and T.W. Rea, “The Tensile Creep Properties of Some Extruded Chromium Alloys,” J. Less-Common Metals, 6 (1964), pp. 184–200.

    Article  CAS  Google Scholar 

  79. G.R. Wilms and T.W. Rea, “Preliminary Investigations on the Properties of Chromium and Chromium Alloys at Elevated Temperatures,” J. Inst. Metals, 87 (1958–59), pp. 77–78.

    CAS  Google Scholar 

  80. J.R. Stephens and W.D. Klopp, “High-Temperature Creep of Polycrystalline Chromium,” J. Less-Common Metals, 27 (1972), pp. 87–94.

    Article  CAS  Google Scholar 

  81. N.E. Ryan, “The Formation, Stability and Influence of Carbide Dispersions in Chromium,” J. Less-Common Metals, 11 (1966), pp. 221–248.

    Article  CAS  Google Scholar 

  82. Y.F. Gu, Y. Ro, and H. Harada, National Institute for Materials Science, unpublished research (2004).

  83. C.T. Liu et al., “Effects of Alloy Additions on the Microstructure and Properties of Cr-Cr2Nb Alloys” Mater. Sci. Eng., A214 (1996), pp. 23–32.

    CAS  Google Scholar 

  84. Y.H. He et al., “Effects of Processing on the Microstructure and Mechanical Behavior of Binary Cr-Ta Alloys,” Mater. Sci. Eng., A329–331 (2002), pp. 696–702.

    Google Scholar 

  85. K.S. Kumar and C.T. Liu, “Precipitation in Cr-Cr2Nb Alloy,” Acta Mater., 45 (1997), pp. 3671–3686.

    Article  CAS  Google Scholar 

  86. M.P. Brady, B. Gleeson, and I.G. Wright, “Alloy Design Strategies for Promoting Protective Oxide-Scale Formation,” JOM, 52 (1) (2000), pp. 16–21.

    Article  CAS  Google Scholar 

  87. R.E. Schafrik, Coating for High-Temperature Structural Materials—Trends and Opportunities, 1st edition (Washington, D.C.: National Academy Press, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Y.F. Gu, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan; +81-298-59-2524; fax +81-298-59-2501; e-mail gu.yuefent@nims.go.jp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y.F., Harada, H. & Ro, Y. Chromium and chromium-based alloys: Problems and possibilities for high-temperature service. JOM 56, 28–33 (2004). https://doi.org/10.1007/s11837-004-0197-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-004-0197-0

Keywords

Navigation