Skip to main content
Log in

Simulating the deformation and recrystallization of aluminum bicrystals

  • Research Summary
  • Simulating Interfaces And Microstructural Evolution
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To understand the formation of the deformation substructure and its evolution during annealing to produce unique microstructures and textures in aluminum alloys, the development and coupling of physically based models spanning different length scales is necessary. Under hot deformation conditions, the deformation substructure is a collection of cells/subgrains of different sizes and orientations. Recrystallization following hot deformation occurs by the heterogeneous evolution of the subgrain structure, the kinetics of which is controlled by variations in driving forces and boundary properties at the microstructural length scale. This article describes a mesoscale approach for modeling the microstructure and texture evolution during recrystallization following hot deformation. A Monte Carlo simulation technique is used to evolve the substructure and texture during recrystallization. The simulations are applied to the deformation and recrystallization of aluminum bicrystals with specific combinations of crystallographic orientations. The simulation results are compared with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Asaro and A. Needleman, “Texture Development and Strain Hardening in Rate Dependent Polycrystals,” Acta metall., 33 (1985), pp. 923–953.

    Article  CAS  Google Scholar 

  2. R.J. Asaro, “Micromechanics of Crystals and Polycrystals,” Adv. Appl. Mech., 23 (1983), pp. 1–115.

    Google Scholar 

  3. G.B. Sarma, B. Radhakrishnan, and P.R. Dawson, “Mesoscale Modeling of Microstructure and Texture Evolution during Deformation Processing of Metals,” Adv. Eng. Mater., 4 (2002), pp. 509–514.

    Article  CAS  Google Scholar 

  4. R. Becker, “Analysis of Texture Evolution in Channel Die Compression. 1. Effects of Grain Interaction,” Acta metall. mater., 39 (1991), pp. 1211–1230.

    Article  Google Scholar 

  5. C.A. Bronkhorst, S.R. Kalidindi, and L. Anand, “Polycrystalline Plasticity and the Evolution of Crystallographic Texture in FCC Metals,” Philos. Trans. Roy. Soc. Lond. A, 341 (1992), pp. 443–477.

    Article  CAS  Google Scholar 

  6. L. Anand and S.R. Kalidindi, “The Process of Shear-Band Formation in Plane-Strain Compression of FCC Metals-Effects of Crystallographic Texture,” Mech. Mater., 17 (1994), pp. 223–243.

    Article  Google Scholar 

  7. R. Becker and S. Panchanadeeswaran, “Effects of Grain Interactions on Deformation and Local Texture in Polycrystals,” Acta metall. mater., 43 (1995), pp. 2701–2719.

    Article  CAS  Google Scholar 

  8. P. Bate, “Modelling Deformation Microstructure with the Crystal Plasticity Finite-Element Method,” Philos. Trans. Roy. Soc. Lond. A, 357 (1999), pp. 1589–1601.

    Article  CAS  Google Scholar 

  9. A.J. Beaudoin et al., “A Hybrid Finite-Element Formulation for Polycrystal Plasticity with Consideration of Macrostructural and Microstructural Linking,” Int. J. Plast, 11 (1995), pp. 501–521.

    Article  CAS  Google Scholar 

  10. A.J. Beaudoin, H. Mecking, and U.F. Kocks, “Development of Localized Orientation Gradients in FCC Polycrystals,” Philos. Mag. A, 73 (1996), pp. 1503–1517.

    CAS  Google Scholar 

  11. G.B. Sarma, B. Radhakrishnan, and T. Zacharia, “Finite Element Simulations of Cold Deformation at the Mesoscale,” Comput. Mater. Sci., 12 (1998), pp. 105–123.

    Article  CAS  Google Scholar 

  12. D.P. Mika and P.R. Dawson, “Effects of Grain Interaction on Deformation in Polycrystals,” Mater. Sci. Eng. A, 257 (1998), pp. 62–76.

    Article  Google Scholar 

  13. P.R. Dawson and E.B. Marin, “Computational Mechanics for Metal Deformation Processes using Polycrystal Plasticity,” Adv. Appl. Mech., 34 (1998), pp. 77–169.

    Article  Google Scholar 

  14. B. Radhakrishnan et al., “Simulations of Deformation and Recrystallization of Single Crystals of Aluminium Containing Hard Particles,” Model. Simul. Mater. Sci. Eng., 8 (2000), pp. 737–750.

    Article  CAS  Google Scholar 

  15. A.D. Rollett, “Overview of Modeling and Simulation of Recrystallization,” Prog. Mater. Sci., 42 (1997), pp. 79–99.

    Article  Google Scholar 

  16. D. Raabe, “Mesoscale Simulation of Recrystallization Textures and Microstructures,” Adv. Eng. Mater., 3 (2001), pp. 745–752.

    Article  CAS  Google Scholar 

  17. L.Q. Chen, “Phase Field Models for Microstructure Evolution,” Ann. Rev. Mater. Sci., 32, (2002), pp. 113–140.

    Article  CAS  Google Scholar 

  18. F.J. Humphreys and M. Hatherly, editors, Recrystallization and Related Annealing Phenomena (Oxford, U.K.: Elsevier, 1995).

    Google Scholar 

  19. D.J. Srolovitz et al., “Grain Growth in 2 Dimensions,” Scripta metal. Mater., 17 (1983), pp. 241–246.

    Article  CAS  Google Scholar 

  20. M.P. Anderson et al., “Computer Simulation of Grain Growth. 1. Kinetics,” Acta metal. mater., 32 (1984), pp. 783–791.

    Article  CAS  Google Scholar 

  21. A.D. Rollett and E.A. Holm, “Abnormal Grain Growth—The Origin of Recrystallization Nuclei?” Proc. Symp. ReX’96 The Third International Conference on Recrystallization and Related Phenomena (Monterey, California, Monterey Inst. of Advanced Studies, 1997), pp. 31–41.

    Google Scholar 

  22. M. Upmanyu et al., “Boundary Mobility and Energy Anisotropy Effects on Microstructural Evolution during Grain Growth,” Int. Sci., 10 (2002), pp. 210–216.

    Google Scholar 

  23. D.C. Hinz and J.A. Szupunar, “Modeling the Effect of Coincidence Site Lattice Boundaries on Grain-Growth Textures,” Phys Rev. B, 52 (1995), pp. 9900–9909.

    Article  CAS  Google Scholar 

  24. B. Radhakrishnan and T. Zacharia, “The Effect of Lattice Temperature on Abnormal Subgrain Growth Simulations using a Monte Carlo Technique,” Int. Sci., 10 (2002), pp. 171–180.

    Article  Google Scholar 

  25. B. Radhakrishnan and T. Zacharia, “On the Monte Carlo Simulation of Curvature-Driven Growth,” Modelling Simul. Mater. Sci. Eng., 10 (2002), pp. 227–236.

    Article  Google Scholar 

  26. H.E. Vatne, T. Furu, and E. Nes, “Nucleation of Recrystallized Grains from Cube Bands in Hot Deformed Commercial Purity Aluminium,” Mater. Sci. Tech. Ser., 12 (1996), pp. 201–210.

    CAS  Google Scholar 

  27. O. Daaland and E. Nes, “Origin of Cube Texture during Hot Rolling of Commercial Al-Mn-Mg Alloys,” Acta mater., 44 (1996), pp. 1389–1411.

    Article  CAS  Google Scholar 

  28. O. Daaland and E. Nes, “Recrystallization Texture Development in Al-Mn-Mg Alloys,” Acta mater., 44 (1996), 1413–1435.

    Article  CAS  Google Scholar 

  29. C. Maurice and J.H. Driver, “High Temperature Plane-Strain Compression of Cube Oriented Aluminum Crystals, Acta mater met., 41 (1993), pp. 1653–1664.

    Article  CAS  Google Scholar 

  30. C. Maurice and J.H. Driver, “Hot Rolling Textures of FCC Metals,” Acta mater., 45 (1997), pp. 4639–4649.

    Article  CAS  Google Scholar 

  31. G. Sarma, B. Radhakrishnan, and T. Zacharia, “Modelling the Deformation of Face Centered Cubic Crystals to Study the Effect of Slip on {110} Planes,” Modelling Simul. Mater. Sci. Eng., 7 (1999), pp. 1025–1043.

    Article  CAS  Google Scholar 

  32. M.C. Theyssier and J.H. Driver, “Recrystallization Nucleation Mechanism along Boundaries in Hot Deformed Aluminum Bicrystals,” Mater. Sci. Eng. A, 272 (1999), pp. 73–82.

    Article  Google Scholar 

  33. M.G. Ardakani and F.J. Humphreys, “The Annealing Behavior of Deformed Particle-Containing Aluminum Single Crystals,” Acta mater. met., 42 (1994), pp. 763–780.

    Article  CAS  Google Scholar 

  34. D.G. Brandon, “The Structure of High-Angle Boundaries,” Acta metall., 14 (1966), pp. 1479–1484.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor’s Note: Research sponsored by the Division of Materials Science and Engineering, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

For more information, contact B. Radhakrishnan, Oak Ridge National Laboratory, Computer Science and Mathematics Division, Oak Ridge, TN 37831-6008; (865) 241-3861; (865) 241-0381; e-mail radhakrishnb@ornl.gov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radhakrishnan, B., Sarma, G. Simulating the deformation and recrystallization of aluminum bicrystals. JOM 56, 55–62 (2004). https://doi.org/10.1007/s11837-004-0074-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-004-0074-x

Keywords

Navigation