Skip to main content

Advertisement

Log in

Developments in determining the anisotropy of solid-liquid interfacial free energy

  • Overview
  • Simulating Interfaces And Microstructural Evolution
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Interfacial free energy and its anisotropy are key to understanding both crystal nucleation and growth behavior. New methods for accurately determining these properties have been developed in the last few years, both theoretically and experimentally. However, there are many questions to be answered: how does the interfacial free energy (and particularly the anisotropy) depend upon material (or interatomic potential)? How does it depend upon crystalline structure? The latter is important in various suggestions that the easiest phase to nucleate from the melt may not be the thermodynamically stable phase.1–5 Do these properties depend upon the structure of the liquid? Recent developments have opened the door not only to new understanding, but to broader questions than could be previously addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alexander and J. McTague, Phys. Rev. Lett., 41 (1978), pp. 702–705.

    Article  CAS  Google Scholar 

  2. P.R. ten Wolde, M.J. Ruiz-Montero, and D. Frenkel, Phys. Rev. Lett., 75 (1995), pp. 2714–2717.

    Article  Google Scholar 

  3. Y.C. Shen and D.W. Oxtoby, Phys. Rev. Lett., 77 (1996), pp. 3585–3588.

    Article  CAS  Google Scholar 

  4. C. Notthoff et al., Phys. Rev. Lett., 86 (2001), pp. 1038–1041.

    Article  CAS  Google Scholar 

  5. D.M. Herlach, J. Phys. C, 13 (2001), pp. 7737–7751.

    CAS  Google Scholar 

  6. D.I. Meiron, Phys. Rev. A, 33 (1986), p. 2704.

    Article  CAS  Google Scholar 

  7. D.A. Kessler and H. Levine, Phys. Rev. B, 33 (1986), p. 7867.

    Article  Google Scholar 

  8. D. Turnbull, J. Appl. Phys., 21 (1950), p. 1022.

    Article  CAS  Google Scholar 

  9. D. Turnbull and R.E. Cech, J. Appl. Phys., 21 (1950), p. 804.

    Article  Google Scholar 

  10. K.F. Kelton, Solid State Physics, 45 (1991), pp. 75–177.

    Article  CAS  Google Scholar 

  11. M.E. Glicksman and C.L. Vold. Acta Metallurgica, 17 (1960), p. 1.

    Article  Google Scholar 

  12. J.W. Taylor, J. Inst. Metals, 86 (1957), p. 456.

    Google Scholar 

  13. R.J. Schaefer, M.E. Glicksman, and J.D. Ayers, Phil. Mag., 32 (1975), p. 725.

    CAS  Google Scholar 

  14. M. Gunduz and J.D. Hunt, Acta Metallurgica, 33 (1985), p. 1651.

    Article  CAS  Google Scholar 

  15. N. Marasli and J.D. Hunt, Acta Materialia, 44 (1996), p. 1085.

    Article  CAS  Google Scholar 

  16. B. Bayender et al., J. Crystal Growth, 194 (1998), p. 119.

    Article  CAS  Google Scholar 

  17. B. Bayender et al., Mater. Sci. and Eng., A270 (1999), p. 343.

    Article  CAS  Google Scholar 

  18. J.R. Morris, Physical Review B, 66 (2002), Art. No. 144104.

  19. D. Holland-Moritz et al., Acta Materialia, 46 (1998), pp. 1601–1615.

    Article  CAS  Google Scholar 

  20. W.A. Miller and G.A. Chadwick, Proc. Roy. Soc. A, 312A (1969), p. 257.

    Article  Google Scholar 

  21. D.R.H. Jones and G.A. Chadwick, Phil. Mag., 24 (1971), p. 1327.

    CAS  Google Scholar 

  22. M.E. Glicksman and N.B. Singh, J. Crystal Growth, 98 (1989), p. 277.

    Article  CAS  Google Scholar 

  23. E.R. Rubenstein and M.E. Glicksman, J. Crystal Growth, 112 (1991), pp. 84–96.

    Article  Google Scholar 

  24. M. Muschol, D. Liu, and H.Z. Cummings, Phys. Rev. A, 46 (1992), p. 1038.

    Article  CAS  Google Scholar 

  25. G.A. Chadwick, Solidification (Metals Park, OH: ASM International, 1969), p. 99.

    Google Scholar 

  26. U.M. Franklin and W.A. Miller, Can. Met. Q., 8 (1969), p. 145.

    CAS  Google Scholar 

  27. J.D. Basterfield and W.A. Miller, Can. Met. Q., 8 (1969), p. 131.

    CAS  Google Scholar 

  28. W.M. Ketcham and P.V. Hobbs, Phil. Mag., 19 (1969), p. 1161.

    CAS  Google Scholar 

  29. A. Dougherty and J.P. Gollub, Phys. Rev. A, 38 (1988), p. 3043.

    Article  CAS  Google Scholar 

  30. E.R. Rubenstein and M.E. Glicksman, J. Crystal Growth, 112 (1991), pp. 97–110.

    Article  Google Scholar 

  31. K. Koo, R. Ananth, and W.N. Gill, Phys. Rev. A, 44 (1991), pp. 3782–3790.

    Article  CAS  Google Scholar 

  32. S. Liu, R.E. Napolitano, and R. Trivedi, Acta Materialia, 49 (2001), pp. 4271–4276.

    Article  CAS  Google Scholar 

  33. R.E. Napolitano, S. Liu, and R. Trivedi, Interface Science, 10 (2002), p. 217.

    Article  CAS  Google Scholar 

  34. R.L. Davidchack and B.B. Laird, Phys. Rev. Lett., 85 (2000), pp. 4751–4754.

    Article  CAS  Google Scholar 

  35. J.J. Hoyt, M. Asta, and A. Karma, Phys. Rev. Lett., 86 (2001), pp. 5530–5533.

    Article  CAS  Google Scholar 

  36. J.J. Hoyt and M. Asta, Phys. Rev. B, 65 (2002), Art. No. 214106.

  37. J.R. Morris and X. Song, J. of Chemical Phys. (submitted in 2003).

  38. R.L. Davidchack and B.B. Laird, J. Chem. Phys., 118 (2003), p. 7651.

    Article  CAS  Google Scholar 

  39. M. Asta, J.J. Hoyt, and A. Karma, Physical Review B, 66 (2002), Art. No. 100101(R).

  40. R.E. Napolitano, J. Crystal Growth (submitted in 2003).

  41. A. Karma, Phys. Rev. E, 48 (1993), p. 3441.

    Article  CAS  Google Scholar 

  42. J.R. Morris (unpublished work, 2003).

  43. B.B. Laird, J. of Chem. Phys., 115 (2001), pp. 2887–2888.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact J.R. Morris, Oak Ridge National Laboratory, Metals & Ceramics Division, P.O. Box 2008, Oak Ridge, TN 37831-6115; (865) 576-7094; fax (865) 576-6298; e-mail morrisj@ornl.gov; or R.E. Napolitano, Dept. of Materials Science, Iowa State University, Ames, IA 50011; (515) 294-9101; e-mail ralphn@iastate.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, J.R., Napolitano, R.E. Developments in determining the anisotropy of solid-liquid interfacial free energy. JOM 56, 40–44 (2004). https://doi.org/10.1007/s11837-004-0071-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-004-0071-0

Keywords

Navigation