Skip to main content
Log in

Phase-field models for eutectic solidification

  • Overview
  • Simulating Interfaces And Microstructural Evolution
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article discusses two methods for modeling eutectic solidification using the phase-field approach. First, a multi-phase-field model is used to study the three-dimensional morphological evolution of binary eutectics. Performing the calculations in three dimensions allows observation of both lamellar and rod-like structures as well as transient phenomena such as lamellar fault motion, rod-branching, and nucleation or elimination of phases as solidification progresses. The second approach models multiple eutectic grains where the crystallizing phases have an orientation relationship. This approach is promising for modeling complex solidification microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Jackson and J.D. Hunt Transactions of the Metallurgical Society of AIME, 236 (August 1966), pp. 1129–1142.

    CAS  Google Scholar 

  2. A. Karma, Physical Review E, 49 (1994), pp. 2245–2250.

    Article  CAS  Google Scholar 

  3. K.R. Elder, J.D. Gunton, and M. Grant, Physical Review E, 54 (1996), pp. 6476–6484.

    Article  Google Scholar 

  4. I. Steinbach et al. Physica D, 94 (3) (1996), pp. 135–147.

    Article  Google Scholar 

  5. A.A. Wheeler, G.B. McFadden, and W.J. Boettinger, Proceedings of the Royal Society of London, Series A Mathematical, Physical and Engineering Sciences, volume 452 (London: Royal Society of London, 1996), pp. 495–525.

    Google Scholar 

  6. M. Seeßelberg and J. Tiaden, Modeling of Casting Welding and Advanced Solidification Processes VIII, ed. B.G. Thomas and C. Beckermann (Warrendale, PA: TMS, 1998), pp. 557–564.

    Google Scholar 

  7. B. Nestler and A.A. Wheeler, Physica D, 138 (2000), pp. 114–133.

    Article  CAS  Google Scholar 

  8. F. Drolet et al., Physical Review E, 61 (2000) pp. 6705–720.

    Article  CAS  Google Scholar 

  9. B. Nestler et al., J. Crystal Growth, 237 (2002), pp. 154–158.

    Article  Google Scholar 

  10. J.A. Warren et al., unpublished.

  11. W.J. Boettinger et al., Annual Reviews of Materials Research, 32 (2002), pp. 163–194.

    Article  CAS  Google Scholar 

  12. W.J. Boettinger and James A. Warren, Met. Trans. A, 27A (1996), pp. 657–669.

    CAS  Google Scholar 

  13. J.W. Cahn and J.E. Hilliard, Journal of Chemical Physics, 28 (1) (1958), pp. 258–267.

    Article  CAS  Google Scholar 

  14. S.M. Allen and J.W. Cahn. Acta Metallurgica, 27 (1979), pp. 1085–1095.

    Article  CAS  Google Scholar 

  15. B. Nestler, Physica D, 141 (2002), pp. 133–154.

    Article  Google Scholar 

  16. O. Penrose and P.C. Fife, Physica D, 43 (1) (1990), pp. 44–62.

    Article  Google Scholar 

  17. R. Trivedi et al., Metallurgical Transactions A, 22 (10) (1991), pp. 2523–2533.

    Google Scholar 

  18. Y.L. Lin et al., Metallurgical Transactions A, 7 (1976), pp. 1435–1441.

    Google Scholar 

  19. L. Gránásy, T. Börzsönyi, and T. Pusztai, Physical Review Letters, 88 (art. no. 206105-1-4) (2002).

  20. L. Gránásy, T. Börzsönyi, and T. Pusztai, J. Crystal Growth, 237–239 (2002), pp. 1813–1817.

    Article  Google Scholar 

  21. L. Gránásy et al., Nature Materials 2 (2) (2003), pp. 92–96.

    Article  Google Scholar 

  22. R. Kobayashi, J.A. Warren, and W.C. Carter, Physica D, 140 (2000), pp. 141–150.

    Article  Google Scholar 

  23. W.C. Swope and H.C. Andersen, Physical Review B, 41 (1990), pp. 7042–7054.

    Article  Google Scholar 

  24. P.R. ten Wolder, M.J. Ruiz-Montero, and D. Frenkel, Physical Review Letters, 75 (1995), pp. 2714–2717.

    Article  Google Scholar 

  25. U. Gasser et al., Science, 292 (5515) (2001), pp. 258–262.

    Article  CAS  Google Scholar 

  26. J.A. Warren and W.J. Boettinger, Acta Metallurgica et Materialia, 43 (1995), pp. 689–703.

    Article  CAS  Google Scholar 

  27. R. Kobayashi, J.A. Warren, and W.C. Carter, Physica D, 119 (34) (1998), pp. 415–423.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Daniel Lewis, General Electric Co., Ceramic and Metallurgy Technologies, Building MB223, One Research Circle, Niskayuna, NY 12309; (518) 387-4538; fax (518) 387-5576; e-mail lewis@research.ge.com.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, D., Warren, J., Boettinger, W. et al. Phase-field models for eutectic solidification. JOM 56, 34–39 (2004). https://doi.org/10.1007/s11837-004-0070-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-004-0070-1

Keywords

Navigation