Skip to main content
Log in

Physical metallurgy in lead-free electronic solder development

  • Overview
  • Physical Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Classical physical metallurgy principles play significant roles in the pursuit of suitable substitutes for traditional lead-based solders in the electronic industry. Phase diagrams, alloy development, solidification, diffusion, wetting, aging, precipitation of second-phase particles, microstructural coarsening, temperature effects, thermomechanical behavior, and creep are among the issues to be considered. This article focuses on the importance of physical metallurgy in these developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.B. Hampshire, Soldering and Surface Mount Technology, 5 (14) (1993), p. 49.

    Google Scholar 

  2. F. Hua and J. Glazer, “Lead-free solders for Electronic Assembly,” Design & Reliability of Solder and Solder Interconnects, ed. R.K. Mahidhara et al. (Warrendale, PA: TMS, 1997), p. 65.

    Google Scholar 

  3. J.H. Lau and C. Chang, “TMA, DMA, DSC, and TGA of Lead-free Solders,” 1998 IEEE 48th Electronic Components and Technology Conference (ECTC) (Piscataway, NJ: IEEE, 1998), p. 1339.

    Google Scholar 

  4. E.R. Monsavive, “Lead Ingestion Hazard in Hand Soldering Environment,” Proceedings of 8th Annual Soldering Technology and Product Assurance Seminar (China Lake, CA: Naval Weapons Center, 1984), p. 2.

    Google Scholar 

  5. J.O. Nrigagu and J.M. Pacyna, Nature, 333 (6169) (1988), p. 134.

    Article  Google Scholar 

  6. National Air Quality and Emission Trend Report, 1989, EPA-450/4-91-003 (Research Triangle Park, NC: Environmental Protection Agency, 1991).

  7. W.J. Plumbridge, Soldering and Surface Mount Technology, 12 (1) (2000), p. 32.

    Article  CAS  Google Scholar 

  8. D. Napp, Sampe Journal, 32 (2) (1996), p. 59.

    CAS  Google Scholar 

  9. A.Z. Miric and A. Grusd, Soldering & Surface Mount Technology, 10 (1) (1998), p. 19.

    Article  CAS  Google Scholar 

  10. R.K. Govila et al., J. Electronic Packaging, 116 (1994), p. 83.

    Google Scholar 

  11. P.T. Vianco, Circuit World, 25 (1) (1998), p. 6.

    Article  Google Scholar 

  12. G.V. Clatterbaugh and H.K. Charles, Proceedings of 35th ECTC (New York: IEEE, 1985).

    Google Scholar 

  13. Y.H. Pao et al., Fatigue of Electronic Materials, ed. S.A. Schroeder et al. (West Conshohocken, PA: American Society for Testing and Materials, 1994), pp. 60–81.

    Google Scholar 

  14. Y. Karita, Y. Hirata, and M. Ostuka, J. Electronic Materials, 28 (11) (1999), p. 1263.

    Article  Google Scholar 

  15. N. M. Poon et al., IEEE Transactions on Advanced Packaging, 23 (4) (2000), p. 708.

    Article  CAS  Google Scholar 

  16. K.N. Subramanian, S. Choi, and F. Guo, “Lead-free Solders with Dispersoids for High Temperature Applications,” Handbook of Lead (Pb)-free Technology for Microelectronic Assemblies (New York: Marcel Dekker, in press).

  17. W.F. Feng, C.Q. Wang, and M. Morinaga, J. Electronic Materials, 31 (3) (2002), p. 185.

    Article  CAS  Google Scholar 

  18. L.J. Matienzo and R.R. Schaffer, J. Materials Science, 26 (3) (1991), p. 787.

    Article  CAS  Google Scholar 

  19. C.M.L Wu and M.L. Huang, J. Electronic Materials, 31 (5) (2002), p. 442.

    Article  CAS  Google Scholar 

  20. D.R. Frear et al., JOM, 53 (6) (2001), p. 28.

    Article  CAS  Google Scholar 

  21. S.K. Kang and T.G. Ference, J. Materials Research, 8 (5) (1993), p. 1033.

    CAS  Google Scholar 

  22. H. Takao and H. Hasegawa, J. Electron Materials, 30 (9) (2001), p. 1060.

    CAS  Google Scholar 

  23. C.S. Oh et al., J. Alloys and Compounds, 238 (1–2) (1996), p. 155.

    Article  CAS  Google Scholar 

  24. F.W. Gayle et al., JOM, 53 (6) (2001), p. 17.

    Article  CAS  Google Scholar 

  25. Z.D. Xia et al., J. Electronic Materials, 31 (6) (2002), p. 564.

    Article  CAS  Google Scholar 

  26. F. Guo et al., Materials Science and Engineering A (in press).

  27. J.G. Lee and K.N. Subramanian, J. Electronic Materials (in press).

  28. J.G. Lee and K.N. Subramanian, J. Materials Research (under review).

  29. R.J. McCabe and M.E. Fine, Metallurgical And Materials Transactions A, 33 (5) (2002), p. 1531.

    Article  Google Scholar 

  30. K.C. Chen et al., J. Electronic Materials, 31 (11) (2002), p. 1181.

    Article  CAS  Google Scholar 

  31. S. Choi et al., J. Materials Science: Materials in Electronics, 11 (6) (2000), p. 497.

    Article  CAS  Google Scholar 

  32. S. Choi et al., JOM, 53 (6) (2001), p. 22.

    Article  CAS  Google Scholar 

  33. F. Guo et al., Soldering & Surface Mount Technology, 13 (1) (2001), p. 7.

    Article  CAS  Google Scholar 

  34. F. Guo et al., J. Electronic Materials, 30 (9) (2001), p. 1073.

    CAS  Google Scholar 

  35. H. Mavoori and S. Jin, JOM, 52 (6) (2000), p. 30.

    CAS  Google Scholar 

  36. J. Sigelko et al., J. Electronic Materials, 29 (11) (2000), p. 1307.

    Article  CAS  Google Scholar 

  37. A.W. Gibson et al., “Issues Regarding Microstructural Coarsening Due to Aging of Eutectic Tin-Silver Solder,” Design & Reliability of Solder and Solder Interconnects, ed. R.K. Mahidhara et al. (Warrendale, PA: TMS, 1997), p. 97.

    Google Scholar 

  38. S. Choi et al., J. Electronic Materials, 28 (11) (1999), p. 1209.

    Article  CAS  Google Scholar 

  39. J. Sigelko et al., J. Electronic Materials, 29 (11) (2000), p. 1307.

    Article  CAS  Google Scholar 

  40. A.U. Telang et al., J. Materials Research, 17 (9) (2002), p. 2294.

    CAS  Google Scholar 

  41. S. Choi et al., J. Electronic Materials, 29 (8) (2000), p. 1249.

    Article  CAS  Google Scholar 

  42. J.G. Lee, A.U. Telang, and K.N. Subramanian, J. Electronic Materials, 31 (11) (2002), p. 1152.

    Article  CAS  Google Scholar 

  43. Y. Kariya, C. Gagg, and W.J. Plumbridge, Soldering & Surface Mount Technology, 13 (1) (2001), p. 39.

    Article  CAS  Google Scholar 

  44. Y. Kariya et al., JOM, 53 (6) (2001), p. 39.

    Article  CAS  Google Scholar 

  45. C. Herring and J.K. Galt, Phys. Rev., 85 (1952), p. 1060.

    Article  Google Scholar 

  46. G.T.T. Sheng et al., J. Applied Physics, 92 (1) (2002), p. 64.

    Article  CAS  Google Scholar 

  47. K. Zeng and K.N. Tu, Materials Science & Engineering R-Reports, 38 (2) (2002), p. 55.

    Article  Google Scholar 

  48. T.Y. Lee, K.N. Tu, and D.R. Frear, J. Applied Physics, 90 (9) (2001), p. 4520.

    Article  CAS  Google Scholar 

  49. H. Gan et al., JOM, 54 (6) (2002), p. 34.

    CAS  Google Scholar 

  50. C.M. Chen and S.W. Chen, J. Applied Physics, 90 (3) (2001), p. 1208.

    Article  CAS  Google Scholar 

  51. S. Choi et al., J. Electronic Materials, 31 (4) (2002), p. 292.

    Article  CAS  Google Scholar 

  52. J.G. Lee et al., J. Electronic Materials, 31 (9) (2002), p. 946.

    Article  CAS  Google Scholar 

  53. V.I. Igoshev and J.I. Kleiman, J. Electronic Materials, 29 (2) (2002), p. 244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact K.N. Subramanian, Michigan State University, Department of Chemical Engineering and Materials Science, East Lansing, MI 48824-1226; e-mail: subraman@egr.msu.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, K.N., Lee, J.G. Physical metallurgy in lead-free electronic solder development. JOM 55, 26–32 (2003). https://doi.org/10.1007/s11837-003-0242-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-003-0242-4

Keywords

Navigation