Skip to main content
Log in

Engineering wear-resistant surfaces in automotive aluminum

  • Overview
  • Aluminum Composites
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Inadequate wear resistance and low seizure loads prevent the direct use of aluminum alloys in automotive parts subject to intensive friction combined with high thermal and mechanical loading, such as brake discs, pistons, and cylinder liners. To enable the use of aluminum alloys in the production of automotive brake discs and other wear-resistant products, the insertion of a monolithic friction cladding rather than surface coating has been considered in this work. Three experimental approaches, two based on the pressure-less infiltration of porous ceramic preforms and one based on the subsequent hot rolling of aluminum and metal-matrix composite strips, are currently under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.N. Becker, JOM, 51 (11) (1999), pp. 26–38.

    CAS  Google Scholar 

  2. S.X. Huang and K. Paxton, JOM, 50 (8) (1998), pp. 26–28.

    CAS  Google Scholar 

  3. A.S. Reddy et al., Wear, 171 (1994), pp. 115–127.

    Article  CAS  Google Scholar 

  4. G. Valentini, Alluminio Magazine, 15 (2) (1999), pp. 32–33.

    Google Scholar 

  5. D.M. Stefanescu and S. Sen, editors, Cast Metal Matrix Composites (Des Plaines, IL: AFS, 1993).

    Google Scholar 

  6. F. Pinna, Al Alluminio E Leghe, 105 (1998), pp. 75–81.

    Google Scholar 

  7. European Automotive Design, 5 (1) (2001), p. 17.

  8. A. Blomberg et al., Wear, 171 (1994), pp. 77–89.

    Article  CAS  Google Scholar 

  9. Adv. Mat. & Proc., 143 (6) (1993), pp. 223–234.

  10. P. Ponticel, Automotive Engineering International, 108 (10) (2000), pp. 86–88.

    Google Scholar 

  11. P. Mayer et al., Cast Metal Matrix Composites (Des Plaines, IL: AFS, 1993).

    Google Scholar 

  12. N.B. Dahotre et al., JOM, 53 (9) (2001), pp. 44–46.

    CAS  Google Scholar 

  13. Adv. Mater. & Proc., 156 (3) (1999), p. 17.

  14. Adv. Mater. & Proc., 158 (1) (2000), p. 50.

  15. R. Limpert, Brake Design and Safety (Warrendale, PA: SAE, 1999), p. 111.

    Google Scholar 

  16. M.G. Jacko et al., U.S. patent 5,339,931 (1994).

  17. J.A.E. Bell et al., Processing, Properties, and Applications of Cast Metal Matrix Composites (Warrendale, PA: TMS, 1996).

    Google Scholar 

  18. R.Y.C. Tsui, Comprehensive Composite Materials (New York, NY: Elsevier, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact V. Kevorkijan, Independent Researching p.l.c., Betnavska c. 6, 2000 Maribor, Slovenia; e-mail kevorkijan.varuzan@amis.net.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavorkijan, V. Engineering wear-resistant surfaces in automotive aluminum. JOM 55, 32–34 (2003). https://doi.org/10.1007/s11837-003-0223-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-003-0223-7

Keywords

Navigation