Skip to main content
Log in

The use of phase diagrams and thermodynamic databases for electronic materials

  • Overview
  • Phase Diagrams
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Phase diagrams and a thermodynamic database constructed by the Calculation of Phase Diagrams approach offer powerful tools for alloy design and materials development. This article presents recent progress on the thermodynamic database for microsolders and copper-based alloys, which is useful for the development of lead-free solders and prediction of interfacial phenomena between solders and the copper substrate in electronic packaging technology. In addition, examples of phase diagram applications are presented to facilitate the development of Co-Cr-based magnetic recording media in hard disks and new ferromagnetic shape-memory alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Nishizawa, Mater. Trans. JIM, 33 (1992), p. 713.

    CAS  Google Scholar 

  2. N. Saunders and A.P. Miodownik, CALPHAD (Lausanne, Switzerland: Pergamon, 1998).

    Google Scholar 

  3. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams (New York: Academic Press, 1970).

    Google Scholar 

  4. B. Sundman, B. Jansson, and T.O. Anderson, CALPHAD, 9 (1985), p. 153.

    Article  CAS  Google Scholar 

  5. G. Eriksson and K. Hack, CALPHAD, 8 (1984), p. 15.

    Article  CAS  Google Scholar 

  6. I. Ohnuma et al., J. Electron. Mater., 28 (1999), p. 1163.

    Article  Google Scholar 

  7. I. Ohnuma et al., Functional Materials, ed. K. Grassie et al. (Weinheim, Germany: Wiley-VCH, 2000), p. 69.

    Chapter  Google Scholar 

  8. X.J. Liu et al., Mechanics and Materials Engineering for Science and Experiments, ed. Y.C. Zhou, Y.X. Gu, and Z. Li (New York: Science Press, 2001), p. 334.

    Google Scholar 

  9. X.J. Liu et al., J. Electron Mater, 32 (11) (2003), pp. 1265–1272.

    Article  CAS  Google Scholar 

  10. C.P. Wang et al., to be submitted to J. Phys. Chem. Solids.

  11. P.T. Vianco and D.R. Frear, JOM, 45 (7) (1993), pp. 14–18.

    CAS  Google Scholar 

  12. S.L. Chen et al., J. Phase Equilibria, 22 (2001), p. 373.

    Article  CAS  Google Scholar 

  13. J.A.V. Butler, Proc. Roy. Soc., A135 (1932), p. 348.

    Article  CAS  Google Scholar 

  14. S. Seetharaman and S. Sichen, Metall. Mater. Trans. B, 25B (1993), p. 89.

    Google Scholar 

  15. J.O. Andesson et al., Fundamental and Application of Ternary Diffusion, ed. G.R. Purdy (New York: Pergamon Press, 1990), p. 153.

    Google Scholar 

  16. X.J. Liu et al., J. Iron Steel International, 6 (2002), p. 333.

    Google Scholar 

  17. H. Takao and H. Hasegawa, J. Electron. Mater., 30 (2001), p. 1060.

    CAS  Google Scholar 

  18. K. Suganuma et al., Acta Mater., 40 (2000), p. 4475.

    Article  Google Scholar 

  19. W.J. Boettinger et al., Ann. Rev. Mater. Res., 32 (2002), p. 163.

    Article  CAS  Google Scholar 

  20. M. Ode, S.G. Kim, and T. Suzuki, ISIJ International, 41 (2001), p. 1076.

    CAS  Google Scholar 

  21. M. Ode et al., 32 (12) J. Electron. Mater. (2003).

  22. E. Bradley and K. Banerji, IEEE Trans. Comp. Pkg. & Mfg. Technol., B19 (1996), p. 320.

    Article  Google Scholar 

  23. S. Kiyono et al., J. Jpn. Electron. Packaging, 2 (1999), p. 298.

    CAS  Google Scholar 

  24. C.P. Wang et al., Science, 297 (2002), p. 990.

    Article  CAS  Google Scholar 

  25. D. Weller and M. FeDoerner, Ann. Rev. Mater. Sci., 30 (2000), p. 661.

    Google Scholar 

  26. K. Hono et al., Appl. Phys. Lett., 62 (1993), p. 2504.

    Article  CAS  Google Scholar 

  27. K. Ishida and T. Nishizawa, Proc. Inter. Conf. on User Aspects of Phase Diagrams, ed. F.H. Hayes (London: The Inst. Metals, 1991), p. 185.

    Google Scholar 

  28. M. Hasebe, K. Oikawa, and T. Nishizawa, J. Jpn. Inst. Metals (in Japanese), 46 (1982), p. 577.

    CAS  Google Scholar 

  29. K. Oikawa et al., Acta Mater., 50 (2002), p. 2223.

    Article  CAS  Google Scholar 

  30. G.W. Qin et al., J. Magn. Magn. Mater., 241 (2002), p. L1.

  31. K. Oikawa et al., J. Magn. Magn. Mater., 239 (2002), p. 409.

    Article  CAS  Google Scholar 

  32. A. Pundt and C. Michaelsen, Phys. Rev. B, 56 (1997), p. 14352.

    Article  CAS  Google Scholar 

  33. Y. Maeda and M. Asahi, IEEE Trans. Magn., MAG-23 (1987), p. 2061.

    Article  CAS  Google Scholar 

  34. N. Inaba et al., J. Magn. Magn. Mater., 168 (1997), p. 222.

    Article  CAS  Google Scholar 

  35. Y. Hirayama et al., IEEE Trans. Magn., MAG-32 (1996), p. 3807.

    Article  Google Scholar 

  36. K. Oikawa et al., J. Magn. Magn. Mater., 236 (2001), p. 220.

    Article  CAS  Google Scholar 

  37. K. Oikawa et al., J. Magn. Soc. Jpn., 25 (2001), p. 478.

    CAS  Google Scholar 

  38. O. Kltakami et al., J. Magn. Magn. Mater., 202 (1999), p. 305.

    Article  Google Scholar 

  39. R.D. Fisher, J.C. Allan, and J.L. Pressesky, IEEE Trans. Magn., 22 (1986), p. 352.

    Article  Google Scholar 

  40. T. Koyama and H. Onodera, private communication (2003).

  41. K. Oikawa et al., Appl. Phys. Lett., 79 (2001), p. 644.

    Article  CAS  Google Scholar 

  42. N. Kikuchi et al., J. Phys. Condens. Mater., 11 (1999), p. L485.

  43. K. Oikawa et al., Appl. Phys. Lett., 83 (2003) p. 966.

    Article  CAS  Google Scholar 

  44. K. Ullakko et al., Appl. Phys. Lett., 69 (1996), p. 1966.

    Article  CAS  Google Scholar 

  45. R.D. James and M. Wuttig, Philos. Mag., A77 (1998), p. 1273.

    Google Scholar 

  46. T. Kateshita et al., Mater. Trans. JIM, 41 (2000), p. 882.

    Google Scholar 

  47. K. Oikawa et al., Appl. Phys. Lett., 79 (2001), p. 3290.

    Article  CAS  Google Scholar 

  48. H. Morito et al., Appl. Phys. Lett., 81 (2002), p. 1657.

    Article  CAS  Google Scholar 

  49. K. Oikawa et al., Mater. Trans., 42 (2001), p. 2472.

    Article  CAS  Google Scholar 

  50. K. Ishida et al., Metall. Trans., 22A (1991), p. 441.

    CAS  Google Scholar 

  51. R. Kainuma, K. Ishida, and T. Nishizawa, Metall. Trans., 23A (1992), p. 1147.

    CAS  Google Scholar 

  52. R. Kainuma et al., Mater. Res. Soc. Proc., 246 (1992), p. 403.

    CAS  Google Scholar 

  53. R. Kainuma et al., Intermetallics, 4 (1996), p. S151.

  54. K. Oikawa et al., J. Phys. IV, 81 (2003), in press.

  55. K. Oikawa et al., Trans. Mater. Res. Soc. Jpn., 28 (2003), p. 263.

    Google Scholar 

  56. K. Oikawa et al., Mater. Trans., 43 (2002), p. 2360.

    Article  CAS  Google Scholar 

  57. K. Oikawa et al., Appl. Phys. Lett., 81 (2002), p. 5201.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact K. Ishida, Tohoku University, Department of Materials Science, Graduate School of Engineering, Aoba-yama 02, Sendai 980-8579, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X.J., Kainuma, R., Ohnuma, I. et al. The use of phase diagrams and thermodynamic databases for electronic materials. JOM 55, 53–59 (2003). https://doi.org/10.1007/s11837-003-0012-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-003-0012-3

Keywords

Navigation