Skip to main content
Log in

Garnets: Structure, compressibility, dynamics, and disorder

  • Research Summary
  • Alloy Science
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The structure and properties of anhydrous end members of the garnet family were investigated by quantum mechanical calculations as a function of applied pressure. The results were used to analyze the compression mechanism of the garnet structure. Hydrogrossular and hydropyrope were also studied at ambient and high pressure; the experimentally observed difference in the stability of the hydrogarnet substitution in grossular and pyrope is explained here. In addition, the potential energy surface for magnesium in the pyrope structure is discussed in relation to vibrational properties and to possible cation disorder in pyrope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Geller, Z. Kristallographie, 125 (1967), p. 1.

    Article  CAS  Google Scholar 

  2. G.A. Novak and G.V. Gibbs, Amer. Mineralogist 56 (1971), p. 791.

    CAS  Google Scholar 

  3. A.L. Gentile and R. Roy, Amer. Mineralogist, 45 (1960), p. 701.

    CAS  Google Scholar 

  4. B.A. Fursenko, Doklady Akad. Nauk SSSR, 268 (1980), p. 421.

    Google Scholar 

  5. H. Ohashi, T. Osawa, and A. Sato, Acta Cryst., C 51 (1995), p. 2213.

    Google Scholar 

  6. B. Winkler, Z. Kristallographie, 214 (1999), p. 506.

    Article  CAS  Google Scholar 

  7. P. Hohenberg and W. Kohn, Phys. Rev., 136 (1964), p. 864; W. Kohn and L.J. Sham, Phys. Rev., A, 140 (1965), p. 1133.

    Article  Google Scholar 

  8. E.V. Akhmatskaya et al., Z. Kristallographie, 214 (1999), p. 808.

    Article  CAS  Google Scholar 

  9. B. Winkler et al., Amer. Mineralogist, 85 (2000), p. 608.

    CAS  Google Scholar 

  10. V. Milman et al., Int. J. Quantum Chem., 77 (2000), p. 895.

    Article  CAS  Google Scholar 

  11. J.P. Perdew and Y. Wang, Phys. Rev., B45 (1992), p. 13244.

    Google Scholar 

  12. M.C. Payne et al., Rev. Mod. Phys., 64 (1992), p. 1045.

    Article  CAS  Google Scholar 

  13. J.S. Lin et al., Phys. Rev., B47 (1993), p. 4174.

    Google Scholar 

  14. D. Vanderbilt, Phys. Rev., B41 (1990), pp. 7892–7895.

    Google Scholar 

  15. MSI, CASTEP User Guide (San Diego, CA: Molecular Simulations, 1999).

  16. B.B. Karki et al., Amer. Mineralogist, 82 (1997), p. 635.

    CAS  Google Scholar 

  17. V.B. Deyirmenjian et al., Phys. Rev., B52 (1995), p. 15191.

    Google Scholar 

  18. B.B. Karki et al., Amer. Mineralogist, 82 (1997), p. 51.

    CAS  Google Scholar 

  19. T. Armbruster and C.A. Geiger, European J. Mineral., 5 (1993), p. 59.

    CAS  Google Scholar 

  20. P.G. Conrad et al., Amer. Mineralogist, 84 (1999), p. 374.

    CAS  Google Scholar 

  21. J. Carda et al., J. Sol. State Chem., 108 (1994), p. 24.

    Article  CAS  Google Scholar 

  22. J.M. Leger, A.M. Redon, and C. Chateau, Phys. Chem. Minerals, 17 (1990), p. 161.

    Article  CAS  Google Scholar 

  23. T. Arlt et al., Phys. Chem. Minerals, 26 (1998), pp. 100–106.

    Article  CAS  Google Scholar 

  24. A.B. Woodland and C.R. Ross, II, Phys. Chem. Minerals, 21 (1994), pp. 117–132.

    Article  CAS  Google Scholar 

  25. A.B. Woodland et al., J. Geophys. Res., 104 (1999), p. 20049.

    Article  CAS  Google Scholar 

  26. G.A. Lager, T. Armbruster, and J. Faber, Amer. Mineralogist, 72 (1987), p. 756.

    CAS  Google Scholar 

  27. G.A. Lager and R.B. Von Dreele, Amer. Mineralogist, 81 (1996), p. 1097.

    CAS  Google Scholar 

  28. H. Olijnik et al., J. Geophys. Res., 96 (1991), p. 14313.

    Google Scholar 

  29. E. Murad, Amer. Mineralogist, 69 (1984), p. 722.

    CAS  Google Scholar 

  30. R.M. Hazen and L.W. Finger, Amer. Mineralogist, 63 (1978), p. 297.

    CAS  Google Scholar 

  31. L. Zhang et al., Phys. Chem. Miner., 27 (1999), p. 52.

    Article  Google Scholar 

  32. L. Zhang, H. Ahsbans, and A. Kutoglu, Phys. Chem. Minerals, 25 (1998), p. 301.

    Article  CAS  Google Scholar 

  33. R.D. Aines and G.R. Rossman, J. Geophys. Res., 89 (1984), p. 4059.

    Article  CAS  Google Scholar 

  34. R.E. Rudd and J.Q. Broughton, Phys. Stat. Sol. (b), 217 (2000), p. 251.

    Article  CAS  Google Scholar 

  35. V.B. Shenoy et al., J. Mech. Phys. Solids, 47 (1999), p. 611.

    Article  Google Scholar 

  36. T.D. Engeness and T.A. Arias, Phys. Rev. Lett., 79 (1997), p. 3006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact V. Milman, Molecular Simulations, the Quorum, Barnwell Road, Cambridge CB5 8RE, United Kingdom; telephone 44-1223-413300; fax 44-1223-413301; e-mail vmilman@msi-eu.com

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milman, V., Winkler, B., Nobes, R.H. et al. Garnets: Structure, compressibility, dynamics, and disorder. JOM 52, 22–25 (2000). https://doi.org/10.1007/s11837-000-0156-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-000-0156-3

Keywords

Navigation