Skip to main content
Log in

Spectrométrie de masse et hémocultures: un nouvel outil de diagnostic immédiat

Mass spectrometry and blood cultures: a new instant diagnosis tool

  • Mise au Point
  • Published:
Bio tribune magazine

Résumé

Le retard à l’identification des microorganismes est une barrière à l’établissement d’une antibiothérapie empirique adéquate des bactériémies. La spectrométrie de masse MALDI-TOF-MS permet d’obtenir une identification rapide des microorganismes responsables de bactériémies, moyennant une adaptation de la technique qui a fait ses preuves sur colonies. Les protocoles publiés sont très variés. Ils sont tous fondés sur la concentration et la séparation des microorganismes des hématies et des substances contenues dans le bouillon d’hémoculture, pouvant dégrader la qualité des spectres. La grande majorité des études publiées à ce jour ont donné des taux d’identification supérieurs à 80 %, dans un délai de 20 minutes à une heure, à partir du signal de la détection de la positivité.

La spectrométrie MALDI-TOF-MS, de loin la plus rapide des techniques d’identification, représente donc une avancée incontestable dans l’amélioration de la prise en charge du malade bactériémique.

Abstract

Delay in identification of microorganisms hamper the prompt initiation of adequate empirical antibiotic therapy of bacteremia. MALDI-TOF-MS allows identification of microorganisms directly from colonies within minutes. Identification of microorganisms responsible for bacteremia can be made directly from blood culture bottles. Many different protocols have been published, all based on the separation of microorganisms from erythrocytes and blood culture broth that alter the quality of spectra. Correct identifications were obtained for most of the procedures used in at least 80% of cases, within 20 to 60 min once the blood culture is detected positive.

MALDI-TOF-MS, by far the fastest identification technique, offers a significant breakthrough in the management of bacteremia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Kumar A, Roberts D, Wood KE, et al. (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34: 1589–1596

    Article  PubMed  Google Scholar 

  2. Lodise TP, McKinnon PS, Swiderski L, Rybak MJ (2003) Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis 36: 1418–1423

    Article  PubMed  Google Scholar 

  3. Lodise TP Jr, Patel N, Kwa A, et al. (2007) Predictors of 30-day mor tality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother 51: 3510–3515

    Article  PubMed  CAS  Google Scholar 

  4. Seifert H (2009) The clinical importance of microbiological findings in the diagnosis and management of bloodstream infections. Clin Infect Dis 48 (Suppl 4): S238–S245

    Article  PubMed  Google Scholar 

  5. Bruins MJ, Bloembergen P, Ruijs GJ, Wolfhagen MJ (2004) Identification and susceptibility testing of Enterobacteriaceae and Pseudomonas aeruginosa by direct inoculation from positive BACTEC blood culture bottles into Vitek 2. J Clin Microbiol 42: 7–11

    Article  PubMed  Google Scholar 

  6. de Cueto M, Ceballos E, Martinez-Martinez L, et al. (2004) Use of positive blood cultures for direct identification and susceptibility testing with the vitek 2 system. J Clin Microbiol 42: 3734–3738

    Article  PubMed  Google Scholar 

  7. Kerremans JJ, Verboom P, Stijnen T, et al. (2008) Rapid identification and antimicrobial susceptibility testing reduce antibiotic use and accelerate pathogen-directed antibiotic use. J Antimicrob Chemother 61: 428–435

    Article  PubMed  CAS  Google Scholar 

  8. Cleven BE, Palka-Santini M, Gielen J, et al. (2006) Identification and characterization of bacterial pathogens causing bloodstream infections by DNA microarray. J Clin Microbiol 44: 2389–2397

    Article  PubMed  CAS  Google Scholar 

  9. Jordan JA, Jones-Laughner J, Durso MB (2009) Utility of pyrosequencing in identifying bacteria directly from positive blood culture bottles. J Clin Microbiol 47: 368–372

    Article  PubMed  CAS  Google Scholar 

  10. Kempf VA, Trebesius K, Autenrieth IB (2000) Fluorescent In situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 38: 830–838

    PubMed  CAS  Google Scholar 

  11. Marlowe EM, Hogan JJ, Hindler JF, et al. (2003) Application of an rRNA probe matrix for rapid identification of bacteria and fungi from routine blood cultures. J Clin Microbiol 41: 5127–5133

    Article  PubMed  CAS  Google Scholar 

  12. Mehta MS, Paule SM, Thomson RB, et al. (2009) Identification of Staphylococcus species directly from positive blood culture broth by use of molecular and conventional methods. J Clin Microbiol 47: 1082–1086

    Article  PubMed  CAS  Google Scholar 

  13. Qian Q, Tang YW, Kolbert CP, et al. (2001) Direct identification of bacteria from positive blood cultures by amplification and sequencing of the 16S rRNA gene: evaluation of BACTEC 9240 instrument truepositive and false-positive results. J Clin Microbiol 39: 3578–3582

    Article  PubMed  CAS  Google Scholar 

  14. Turenne CY, Witwicki E, Hoban DJ, et al. (2000) Rapid identification of bacteria from positive blood cultures by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J Clin Microbiol 38: 513–520

    PubMed  CAS  Google Scholar 

  15. Wellinghausen N, Wirths B, Essig A, Wassill L (2004) Evaluation of the Hyplex BloodScreen Multiplex PCR-Enzyme-linked immunosorbent assay system for direct identification of gram-positive cocci and gram-negative bacilli from positive blood cultures. J Clin Microbiol 42: 3147–3152

    Article  PubMed  CAS  Google Scholar 

  16. Ruimy R, Dos-Santos M, Raskine L, et al. (2008) Accuracy and potential usefulness of triplex real-time PCR for improving antibiotic treatment of patients with blood cultures showing clustered gram-positive cocci on direct smears. J Clin Microbiol 46: 2045–2051

    Article  PubMed  CAS  Google Scholar 

  17. Carbonnelle E, Beretti JL, Cottyn S, et al. (2007) Rapid identification of Staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 45: 2156–2161

    Article  PubMed  CAS  Google Scholar 

  18. Degand N, Carbonnelle E, Dauphin B, et al. (2008) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis patients. J Clin Microbiol 46: 3361–3367

    Article  PubMed  CAS  Google Scholar 

  19. Seng P, Drancourt M, Gouriet F, et al. (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49: 543–551

    Article  PubMed  CAS  Google Scholar 

  20. Bille E, Dauphin B, Leto J, et al. (2011) Performance of the MALDITOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeast, Aspergillus spp and positive blood cultures. Clin Microbiol Infect (in press)

  21. Christner M, Rohde H, Wolters M, et al. (2010) Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol 48: 1584–1591

    Article  PubMed  CAS  Google Scholar 

  22. Ferreira L, Sánchez-Juanes F, Muñoz-Bellido JL, González-Buitrago JM (2011) Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method. Clin Microbiol Infect 17: 1007–1012

    Article  PubMed  CAS  Google Scholar 

  23. La Scola B, Raoult D (2009) Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation timeof-flight mass spectrometry. PLoS One 4: e8041

    Article  PubMed  Google Scholar 

  24. Moussaoui W, Jaulhac B, Hoffmann AM, et al. (2010) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin Microbiol Infect 16: 1631–1638

    Article  PubMed  CAS  Google Scholar 

  25. Prod’hom G, Bizzini A, Durussel C, et al. (2010) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol 48: 1481–1483

    Article  PubMed  Google Scholar 

  26. Stevenson LG, Drake SK, Murray PR (2010) Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48: 444–447

    Article  PubMed  CAS  Google Scholar 

  27. Ferroni A, Suarez S, Beretti JL, et al. (2010) Real-time identification of bacteria and Candida species in positive blood culture broths by matrixassisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48: 1542–1548

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt V, Jarosch A, Marz P, et al. (2011) Rapid identification of bacteria in positive blood culture by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis (in press)

  29. Ferreira L, Sanchez-Juanes F, Porras-Guerra I, et al. (2011) Microorganisms direct identification from blood culture by matrixassisted laser desorption/ionization time-of-flight mass spectrometry. Clin Microbiol Infect 17: 546–551

    Article  PubMed  CAS  Google Scholar 

  30. Kroumova V, Gobbato E, Basso E, et al. (2011) Direct identification of bacteria in blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new methodological approach. Rapid Commun Mass Spectrom 25: 2247–2249

    Article  PubMed  CAS  Google Scholar 

  31. Szabados F, Michels M, Kaase M, Gatermann S (2011) The sensitivity of direct identification from positive BacT/ALERT (bioMerieux) blood culture bottles by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is low. Clin Microbiol Infect 17: 192–195

    Article  PubMed  CAS  Google Scholar 

  32. Romero-Gomez MP, Mingorance J (2010) The effect of the blood culture bottle type in the rate of direct identification from positive cultures by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry. J Infect 62: 251–253

    Article  PubMed  Google Scholar 

  33. Marinach-Patrice C, Fekkar A, Atanasova R, et al. (2010) Rapid species diagnosis for invasive candidiasis using mass spectrometry. PLoS One 5: e8862

    Article  PubMed  Google Scholar 

  34. Yan Y, He Y, Maier T, et al. (2011) Improved identification of yeast species directly from positive blood culture media by combining sepsityper specimen processing and microflex analysis with the matrixassisted laser desorption ionization biotyper system. J Clin Microbiol 49: 2528–2532

    Article  PubMed  Google Scholar 

  35. Barenfanger J, Drake C, Kacich G (1999) Clinical and financial benefits of rapid bacterial identification and antimicrobial susceptibility testing. J Clin Microbiol 37: 1415–1418

    PubMed  CAS  Google Scholar 

  36. Doern GV, Vautour R, Gaudet M, Levy B (1994) Clinical impact of rapid in vitro susceptibility testing and bacterial identification. J Clin Microbiol 32: 1757–1762

    PubMed  CAS  Google Scholar 

  37. Harbarth S, Garbino J, Pugin J, et al. (2003) Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 115: 529–535

    Article  PubMed  Google Scholar 

  38. Ibrahim EH, Sherman G, Ward S, et al. (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118: 146–155

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ferroni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferroni, A., Suarez, S., Bille, E. et al. Spectrométrie de masse et hémocultures: un nouvel outil de diagnostic immédiat. Bio trib. mag. 40, 31–36 (2011). https://doi.org/10.1007/s11834-011-0058-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11834-011-0058-4

Mots-clés

Keywords

Navigation