Skip to main content
Log in

Ciblage pharmacologique de la MT1-MMP dans les cellules tumorales cérébrales par l’actinonine, un inhibiteur de l’aminopeptidase N/CD13

Pharmacological targeting of MT1-MMP by actinonin in brain tumours

  • Mise Au Point
  • Published:
Bio tribune magazine

Résumé

L’actinonine, un inhibiteur de l’amino — peptidase N/CD13, possède également la capacité d’inhiber l’activité de certaines métalloprotéinases matricielles (MMP) solubles. Les effets de l’actinonine sur les MMP membranaires, telle la MT1-MMP, demeurent par contre peu connus. La MT1-MMP étant associée à une résistance à la chimiothérapie et à la radio thérapie au cours du dévelop — pement de tumeurs cérébrales, nous avons donc évalué son inhibition fonctionnelle par l’actinonine dans des cellules de glio blastome U87. Nous démontrons que l’actinonine inhibe l’activation de la proMMP-2 induite par la lectine concanavaline-A (ConA), tandis qu’elle est sans effet sur l’expression génique de MT1-MMP induite par la ConA. De plus, les effets posttranscriptionnels de l’actinonine pourraient s’exercer par le biais d’un autre régulateur membranaire d’activité pro — téasique de RECK (Reversion-inducing Cysteine-rich Protein with Kazal Motifs). L’actinonine exerce également un effet antagoniste sur une forme recombinante fonctionnelle de la MT1-MMP, dont l’expression constitutive entraîne l’activation de la proMMP-2. Ainsi, nous appor tons des preuves moléculaires supportant une nouvelle fonction inhi — bitrice de l’actinonine dans le ciblage direct de l’activation de la proMMP-2 par la MT1-MMP, une étape clé dans l’angio — génèse tumorale et dans l’acquisition du caractère infiltrant des tumeurs cérébrales.

Abstract

Recent profiling has identified the aminopeptidase N/CD13 inhibitor actinonin as a selective soluble secreted matrix metalloproteinase (MMP) inhibitor. Given that actinonin’s effects against membranebound MMPs remain unknown and that MT1-MMP has been linked to chemo- and radio-therapy resistance in brain tumour development, we therefore assessed MT1-MMP functional inhibition by actinonin in U87 glioblastoma cells. We show that actinonin inhibits concanavalin-A (ConA)-induced proMMP-2 activation, while it does not inhibit ConA-induced MT1-MMP gene expression suggesting post-transcriptional effects of the drug may possibly be mediated through the membrane-anchored protease regulator RECK. Specific gene silencing of MT1-MMP with siRNA abrogated the ability of ConA to activate proMMP-2. Functional recombinant MT1-MMP, whose constitutive expression led to proMMP-2 activation, was also efficiently antagonized by actinonin. We provide evidence for actinonin’s new therapeutic application in the direct targeting of MT1-MMP-mediated proMMP-2 activation, an essential step in both brain tumour infiltration and in brain tumor-associated angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

APN:

Aminopeptidase N

HUVEC:

Cellules endothéliales de la veine ombilicale humaine

ConA:

Concanavaline-A

MEC:

Matrice extracellulaire

MMP:

Métalloprotéinase matricielle

MT1-MMP:

Métalloprotéinase matricielle de type membranaire 1

RECK:

Reversion-inducing Cysteine-rich Protein with Kazal Motifs

Références

  1. Lee MD, She Y, Soskis MJ, Borella CP, Gardner JR, Hayes PA, Dy BM, et al (2004) Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. J Clin Invest 114: 1107–1116

    PubMed  CAS  Google Scholar 

  2. Bauvois B, Dauzonne D (2006) Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med Res Rev 26: 88–130

    Article  PubMed  CAS  Google Scholar 

  3. Giglione C, Pierre M, Meinnel T (2000) Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mol Microbiol 36: 1197–1205

    Article  PubMed  CAS  Google Scholar 

  4. Van Aller GS, Nandigama R, Petit CM, DeWolf WE Jr, Quinn CJ, Aubart KM, Zalacain M, Christensen SB, et al. (2005) Mechanism of time-dependent inhibition of polypeptide deformylase by actinonin. Biochemistry 44: 253–260

    Article  PubMed  Google Scholar 

  5. Riemann D, Kehlen A, Thiele K, Löhn M, Langner J (1997) Induction of aminopeptidase N/CD13 on human lymphocytes after adhesion to fibroblast-like synoviocytes, endothelial cells, epithelial cells, and monocytes/macrophages. J Immunol 158: 3425–3432

    PubMed  CAS  Google Scholar 

  6. Kehlen A, Olsen J, Langner J, Riemann D (2000) Increased lymphocytic aminopeptidase N/CD13 promoter activity after cell-cell contact. J Cell Biochem 80: 115–123

    Article  PubMed  CAS  Google Scholar 

  7. Rangel R, Sun Y, Guzman-Rojas L, Ozawa MG, Sun J, Giordano RJ, Van Pelt CS, et al. (2007) Impaired angiogenesis in aminopeptidase N-null mice. Proc Natl Acad Sci USA 104: 4588–4593

    Article  PubMed  CAS  Google Scholar 

  8. Fujii H, Nakajima M, Saiki I, Yoneda J, Azuma I, Tsuruo T (1995) Human melanoma invasion and metastasis enhancement by high expression of aminopeptidase N/CD13. Clin Exp Metastasis 13: 337–344

    Article  PubMed  CAS  Google Scholar 

  9. Ikeda N, Nakajima Y, Tokuhara T, Hattori N, Sho M, Kanehiro H, Miyake M (2003) Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma. Clin Cancer Res 9: 1503–1508

    PubMed  CAS  Google Scholar 

  10. Hashida H, Takabayashi A, Kanai M, Adachi M, Kondo K, Kohno N, Yamaoka Y, Miyake M (2002) Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology 122: 376–386

    Article  PubMed  CAS  Google Scholar 

  11. Kehlen A, Lendeckel U, Dralle H, Langner J, Hoang-Vu C (2003) Biological significance of aminopeptidase N/CD13 in thyroid carcinomas. Cancer Res 63: 8500–8506

    PubMed  CAS  Google Scholar 

  12. Xu Y, Lai LT, Gabrilove JL, Scheinberg DA (1998) Antitumor activity of actinonin in vitro and in vivo. Clin Cancer Res 4: 171–176

    PubMed  CAS  Google Scholar 

  13. Fukasawa K, Fujii H, Saitoh Y, Koizumi K, Aozuka Y, Sekine K, Yamada M, Saiki I, Nishikawa K (2006) Aminopeptidase N (APN/CD13) is selectively expressed in vascular endothelial cells and plays multiple roles in angiogenesis. Cancer Lett 243: 135–143

    Article  PubMed  CAS  Google Scholar 

  14. Sato H, Takino T, Miyamori H (2005) Roles of membrane-type matrix metalloproteinase-1 in tumor invasion and metastasis. Cancer Sci 96: 212–217

    Article  PubMed  CAS  Google Scholar 

  15. Bauvois B (2004) Transmembrane proteases in cell growth and invasion: new contributors to angiogenesis? Oncogene 23: 317–329

    Article  PubMed  CAS  Google Scholar 

  16. Genís L, Gálvez BG, Gonzalo P, Arroyo AG (2006) MT1-MMP: universal or particular player in angiogenesis? Cancer Metastasis Rev 25: 77–86

    Article  PubMed  Google Scholar 

  17. Currie JC, Fortier S, Sina A, Galipeau J, Cao J, Annabi B (2007) MT1-MMP downregulates the glucose 6-phosphate transporter expression in marrow stromal cells: a molecular link between pro-MMP-2 activation, chemotaxis, and cell survival. J Biol Chem 282: 8142–8149

    Article  PubMed  CAS  Google Scholar 

  18. Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P (2007) MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109: 4055–4063

    Article  PubMed  CAS  Google Scholar 

  19. Nakamizo A, Marini F, Amano T, Khan A, et al. (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65: 3307–3318. Erratum in: Cancer Res 2006; 66: 5975

    PubMed  CAS  Google Scholar 

  20. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270: 5331–5338

    Article  PubMed  CAS  Google Scholar 

  21. Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, et al. (2000) Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA 97: 4052–4057

    Article  PubMed  CAS  Google Scholar 

  22. Savinov AY, Rozanov DV, Golubkov VS, Wong FS, Strongin AY (2005) Inhibition of membrane type-1 matrix metalloproteinase by cancer drugs interferes with the homing of diabetogenic T cells into the pancreas. J Biol Chem 280: 27755–27758

    Article  PubMed  CAS  Google Scholar 

  23. Atobe K, Ishida T, Ishida E, Hashimoto K, Kobayashi H, Yasuda J, et al. (2007) In vitro efficacy of a sterically stabilized immunoliposomes targeted to membrane type 1 matrix metalloproteinase (MT1-MMP). Biol Pharm Bull 30: 972–978

    Article  PubMed  CAS  Google Scholar 

  24. Arroyo AG, Genís L, Gonzalo P, Matías-Román S, Pollán A, Gálvez BG (2007) Matrix metalloproteinases: new routes to the use of MT1-MMP as a therapeutic target in angiogenesis-related disease. Curr Pharm Des 13: 1787–1802

    Article  PubMed  CAS  Google Scholar 

  25. Fortier S, Touaibia M, Lord-Dufour S, Galipeau J, Roy R, Annabi B (2008) Tetraand hexavalent mannosides inhibit the proapoptotic, antiproliferative and cell surface clustering effects of concanavalin-A: impact on MT1-MMP functions in marrow-derived mesenchymal stromal cells. Glycobiology 18: 195–204

    Article  PubMed  CAS  Google Scholar 

  26. Cao J, Chiarelli C, Kozarekar P, Adler HL (2005) Membrane type 1-matrix metalloproteinase promotes human prostate cancer invasion and metastasis. Thromb Haemost 93: 770–778

    PubMed  CAS  Google Scholar 

  27. Neth P, Ciccarella M, Egea V, Hoelters J, et al. (2006) Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells 24: 1892–1903

    Article  PubMed  CAS  Google Scholar 

  28. Annabi B, Lachambre M, Bousquet-Gagnon N, Pagé M, et al. (2001) Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains. Biochem J 353: 547–553

    Article  PubMed  CAS  Google Scholar 

  29. Belkaid A, Fortier S, Cao J, Annabi B (2007) Necrosis induction in glioblastoma cells reveals a new « bioswitch » function for the MT1-MMP/G6PT signaling axis in proMMP-2 activation versus cell death decision. Neoplasia 9: 332–340

    Article  PubMed  CAS  Google Scholar 

  30. Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF (2004) Activitybased probes for the proteomic profiling of metalloproteases. Proc Natl Acad Sci USA 101: 10000–10005

    Article  PubMed  CAS  Google Scholar 

  31. Annabi B, Thibeault S, Lee YT, Bousquet-Gagnon N, Eliopoulos N, et al. (2003) Matrix metalloproteinase regulation of sphingosine-1-phosphate-induced angiogenic properties of bone marrow stromal cells. Exp Hematol 31: 640–649

    Article  PubMed  CAS  Google Scholar 

  32. Antczak C, Radu C, Djaballah H (2008) A profiling platform for the identification of selective metalloprotease inhibitors. J Biomol Screen 13: 285–294

    Article  PubMed  CAS  Google Scholar 

  33. Miki T, Takegami Y, Okawa K, Muraguchi T, Noda M, Takahashi C (2007) The reversioninducing cysteine-rich protein with Kazal motifs (RECK) interacts with membrane type 1 matrix metalloproteinase and CD13/aminopeptidase N and modulates their endocytic pathways. J Biol Chem 282: 12341–12352

    Article  PubMed  CAS  Google Scholar 

  34. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58: 1048–1051

    PubMed  CAS  Google Scholar 

  35. Holmbeck K, Bianco P, Caterina J, Yamada S, et al. (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99: 81–92

    Article  PubMed  CAS  Google Scholar 

  36. Itoh Y, Seiki M (2006) MT1-MMP: a potent modifier of pericellular microenvironment. J Cell Physiol 206: 1–8

    Article  PubMed  CAS  Google Scholar 

  37. Glioma Meta-analysis Trialists (GMT) Group. Lancet 2002; 359: 1011–1018

    Article  Google Scholar 

  38. Berens ME, Giese A (1999) «...those left behind.» Biology and oncology of invasive glioma cells. Neoplasia 1: 208–219

    Article  PubMed  CAS  Google Scholar 

  39. Annabi B, Bouzeghrane M, Moumdjian R, Moghrabi A, Béliveau R (2005) Probing the infiltrating character of brain tumors: inhibition of RhoA/ROK-mediated CD44 cell surface shedding from glioma cells by the green tea catechin EGCg. J Neurochem 94: 906–916

    Article  PubMed  CAS  Google Scholar 

  40. McLaughlin N, Annabi B, Bouzeghrane M, Temme A, Bahary JP, Moumdjian R, Béliveau R (2006) The Survivin-mediated radioresistant phenotype of glioblastomas is regulated by RhoA and inhibited by the green tea polyphenol (−)-epigallocatechin-3-gallate. Brain Res 1071: 1–9

    Article  PubMed  CAS  Google Scholar 

  41. Fillmore HL, VanMeter TE, Broaddus WC (2001) Membrane-type matrix metalloproteinases (MT-MMPs): expression and function during glioma invasion. J Neurooncol 53: 187–202

    Article  PubMed  CAS  Google Scholar 

  42. Nakada M, Kita D, Futami K, Yamashita J, Fujimoto N, Sato H, Okada Y (2001) Roles of membrane type 1 matrix metalloproteinase and tissue inhibitor of metalloproteinases 2 in invasion and dissemination of human malignant glioma. J Neurosurg 94: 464–473

    Article  PubMed  CAS  Google Scholar 

  43. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, et al. (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60: 722–727

    PubMed  CAS  Google Scholar 

  44. Bhagwat SV, Petrovic N, Okamoto Y, Shapiro LH (2003) The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis. Blood 101: 1818–1826

    Article  PubMed  CAS  Google Scholar 

  45. Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ (1998) Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95: 365–377

    Article  PubMed  CAS  Google Scholar 

  46. Collen A, Hanemaaijer R, Lupu F, Quax PH, van Lent N, Grimbergen J, Peters E, Koolwijk P, van Hinsbergh VW (2003) Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix. Blood 101: 1810–1817

    Article  PubMed  CAS  Google Scholar 

  47. d’Ortho MP, Stanton H, Butler M, Atkinson SJ, Murphy G, Hembry RM (1998) MT1-MMP on the cell surface causes focal degradation of gelatin films. FEBS Lett 421: 159–164

    Article  PubMed  Google Scholar 

  48. Lafleur MA, Handsley MM, Knäuper V, Murphy G, Edwards DR (2002) Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-typematrix metalloproteinases (MT-MMPs). J Cell Sci 115: 3427–3438

    PubMed  CAS  Google Scholar 

  49. Koike T, Vernon RB, Hamner MA, Sadoun E, Reed MJ (2002) MT1-MMP, but not secreted MMPs, influences the migration of human microvascular endothelial cells in 3-dimensional collagen gels. J Cell Biochem 86: 748–758

    Article  PubMed  CAS  Google Scholar 

  50. Kheradmand F, Rishi K, Werb Z (2002) Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J Cell Sci 115: 839–848

    PubMed  CAS  Google Scholar 

  51. Annabi B, Rojas-Sutterlin S, Laflamme C, Lachambre MP, Rolland Y, Sartelet H, Béliveau R (2008) Tumor environment dictates medulloblastoma cancer stem cell expression and invasive phenotype. Mol Cancer Res 6: 907–916

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Annabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sina, A., Lord-Dufour, S., Roy, R. et al. Ciblage pharmacologique de la MT1-MMP dans les cellules tumorales cérébrales par l’actinonine, un inhibiteur de l’aminopeptidase N/CD13 . Bio trib. mag. 38, 39–45 (2011). https://doi.org/10.1007/s11834-011-0042-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11834-011-0042-z

Mots clés

Keywords

Navigation