Skip to main content
Log in

Idiopathic scoliosis: etiological concepts and hypotheses

  • Current Concept Review
  • Published:
Journal of Children's Orthopaedics

Abstract

Scoliosis is diagnosed as idiopathic in 70 % of structural deformities affecting the spine in children and adolescents, probably reflecting our current misunderstanding of this disease. By definition, a structural scoliosis should be the result of some primary disorder. The goal of this article is to give a comprehensive overview of the currently proposed etiological concepts in idiopathic scoliosis regarding genetics, molecular biology, biomechanics, and neurology, with particular emphasis on adolescent idiopathic scoliosis (AIS). Despite the fact that numerous potential etiologies for idiopathic scoliosis have been formulated, the primary etiology of AIS remains unknown. Beyond etiology, identification of prognostic factors of AIS progression would probably be more relevant in our daily practice, with the hope of reducing repetitive exposure to radiation, unnecessary brace treatments, psychological implications, and costs-of-care related to follow-up in low-risk patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acaroglu E, Akel I et al (2009) Comparison of the melatonin and calmodulin in paravertebral muscle and platelets of patients with or without adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 34(18):E659–E663

    Article  Google Scholar 

  2. Akoume MY, Azeddine B et al (2010) Cell-based screening test for idiopathic scoliosis using cellular dielectric spectroscopy. Spine (Phila Pa 1976) 35(13):E601–E608

    Google Scholar 

  3. Andersen MO, Thomsen K et al (2007) Adolescent idiopathic scoliosis in twins: a population-based survey. Spine (Phila Pa 1976) 32(8):927–930

    Article  Google Scholar 

  4. Bredoux R, Corvazier E et al (2006) Human platelet Ca2+-ATPases: new markers of cell differentiation as illustrated in idiopathic scoliosis. Platelets 17(6):421–433

    Article  CAS  Google Scholar 

  5. Burwell RG, Aujla RK et al (2009) Pathogenesis of adolescent idiopathic scoliosis in girls—a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy. Scoliosis 4:24

    Article  Google Scholar 

  6. Burwell RG, Dangerfield PH et al (2008) Concepts on the pathogenesis of adolescent idiopathic scoliosis. Bone growth and mass, vertebral column, spinal cord, brain, skull, extra-spinal left-right skeletal length asymmetries, disproportions and molecular pathogenesis. Stud Health Technol Inform 135:3–52

    Google Scholar 

  7. Burwell RG, Dangerfield PH et al (2011) Adolescent idiopathic scoliosis (AIS), environment, exposome and epigenetics: a molecular perspective of postnatal normal spinal growth and the etiopathogenesis of AIS with consideration of a network approach and possible implications for medical therapy. Scoliosis 6(1):26

    Article  Google Scholar 

  8. Cheng JC, Tang SP et al (2001) Osteopenia in adolescent idiopathic scoliosis: a histomorphometric study. Spine (Phila Pa 1976) 26(3):E19–E23

    Article  CAS  Google Scholar 

  9. Chu WC, Lam WM et al (2008) Relative shortening and functional tethering of spinal cord in adolescent scoliosis—result of asynchronous neuro-osseous growth, summary of an electronic focus group debate of the IBSE. Scoliosis 3:8

    Article  Google Scholar 

  10. Chu WC, Lam WW et al (2006) Relative shortening and functional tethering of spinal cord in adolescent idiopathic scoliosis?: study with multiplanar reformat magnetic resonance imaging and somatosensory evoked potential. Spine (Phila Pa 1976) 31(1):E19–E25

    Article  Google Scholar 

  11. Chu WC, Man GC et al (2007) A detailed morphologic and functional magnetic resonance imaging study of the craniocervical junction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 32(15):1667–1674

    Article  Google Scholar 

  12. Chu WC, Man GC et al (2008) Morphological and functional electrophysiological evidence of relative spinal cord tethering in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 33(6):673–680

    Article  Google Scholar 

  13. Clough M, Justice CM et al (2010) Males with familial idiopathic scoliosis: a distinct phenotypic subgroup. Spine (Phila Pa 1976) 35(2):162–168

    Article  Google Scholar 

  14. Cook SD, Harding AF et al (1987) Trabecular bone mineral density in idiopathic scoliosis. J Pediatr Orthop 7(2):168–174

    Article  CAS  Google Scholar 

  15. Dede O, Akel I et al (2011) Is decreased bone mineral density associated with development of scoliosis? A bipedal osteopenic rat model. Scoliosis 6(1):24

    Article  Google Scholar 

  16. Drevelle X, Dubousset J et al (2008) Analysis of the mechanisms of idiopathic scoliosis progression using finite element simulation. Stud Health Technol Inform 140:85–89

    CAS  Google Scholar 

  17. Drevelle X, Lafon Y et al (2010) Analysis of idiopathic scoliosis progression by using numerical simulation. Spine (Phila Pa 1976) 35(10):E407–E412

    CAS  Google Scholar 

  18. Floman Y, Liebergall M et al (1983) Abnormalities of aggregation, thromboxane A2 synthesis, and 14C serotonin release in platelets of patients with idiopathic scoliosis. Spine (Phila Pa 1976) 8(3):236–241

    Article  CAS  Google Scholar 

  19. Gauchard GC, Lascombes P et al (2001) Influence of different types of progressive idiopathic scoliosis on static and dynamic postural control. Spine (Phila Pa 1976) 26(9):1052–1058

    Article  CAS  Google Scholar 

  20. Hadley-Miller N, Mims B et al (1994) The potential role of the elastic fiber system in adolescent idiopathic scoliosis. J Bone Joint Surg Am 76(8):1193–1206

    CAS  Google Scholar 

  21. Haumont T, Gauchard GC et al (2011) Postural instability in early-stage idiopathic scoliosis in adolescent girls. Spine (Phila Pa 1976) 36(13):E847–E854

    Article  Google Scholar 

  22. Healey JH, Lane JM (1985) Structural scoliosis in osteoporotic women. Clin Orthop Relat Res 195:216–223

    Google Scholar 

  23. Justice CM, Miller NH et al (2003) Familial idiopathic scoliosis: evidence of an X-linked susceptibility locus. Spine (Phila Pa 1976) 28(6):589–594

    Google Scholar 

  24. Kahmann RD, Donohue JM et al (1992) Platelet function in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 17(2):145–148

    Article  CAS  Google Scholar 

  25. Karol LA (2001) Effectiveness of bracing in male patients with idiopathic scoliosis. Spine (Phila Pa 1976) 26(18):2001–2005

    Article  CAS  Google Scholar 

  26. Kindsfater K, Lowe T et al (1994) Levels of platelet calmodulin for the prediction of progression and severity of adolescent idiopathic scoliosis. J Bone Joint Surg Am 76(8):1186–1192

    CAS  Google Scholar 

  27. Kono H, Machida M et al (2011) Mechanism of osteoporosis in adolescent idiopathic scoliosis: experimental scoliosis in pinealectomized chickens. J Pineal Res 51(4):387–393

    Article  CAS  Google Scholar 

  28. Lambert FM, Malinvaud D et al (2009) Vestibular asymmetry as the cause of idiopathic scoliosis: a possible answer fromXenopus. J Neurosci 29(40):12477–12483

    Article  CAS  Google Scholar 

  29. Letellier K, Azeddine B et al (2007) Etiopathogenesis of adolescent idiopathic scoliosis and new molecular concepts. Med Sci (Paris) 23(11):910–916

    Article  Google Scholar 

  30. Liu T, Chu WC et al (2008) MR analysis of regional brain volume in adolescent idiopathic scoliosis: neurological manifestation of a systemic disease. J Magn Reson Imaging 27(4):732–736

    Article  Google Scholar 

  31. Lowe T, Lawellin D et al (2002) Platelet calmodulin levels in adolescent idiopathic scoliosis: do the levels correlate with curve progression and severity? Spine (Phila Pa 1976) 27(7):768–775

    Article  Google Scholar 

  32. Machida M, Dubousset J et al (1995) Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Joint Surg Br 77(1):134–138

    CAS  Google Scholar 

  33. Machida M, Dubousset J et al (2009) Serum melatonin levels in adolescent idiopathic scoliosis prediction and prevention for curve progression—a prospective study. J Pineal Res 46(3):344–348

    Article  CAS  Google Scholar 

  34. Mallau S, Bollini G et al (2007) Locomotor skills and balance strategies in adolescents idiopathic scoliosis. Spine (Phila Pa 1976) 32(1):E14–E22

    Article  Google Scholar 

  35. Marosy B, Justice CM et al (2010) Identification of susceptibility loci for scoliosis in FIS families with triple curves. Am J Med Genet A 152A(4):846–855

    Article  CAS  Google Scholar 

  36. Meyer C, Cammarata E et al (2006) Why do idiopathic scoliosis patients participate more in gymnastics? Scand J Med Sci Sports 16(4):231–236

    Article  CAS  Google Scholar 

  37. Meyer C, Haumont T et al (2008) The practice of physical and sporting activity in teenagers with idiopathic scoliosis is related to the curve type. Scand J Med Sci Sports 18(6):751–755

    Article  CAS  Google Scholar 

  38. Meyer S, More R et al (1987) Platelet pathology in minimal curve idiopathic scoliosis: an attempt to predict curve progression. J Orthop Res 5(3):330–336

    Article  CAS  Google Scholar 

  39. Miller NH (2011) Idiopathic scoliosis: cracking the genetic code and what does it mean? J Pediatr Orthop 31(1 Suppl):S49–S52

    Article  Google Scholar 

  40. Miller NH (2007) Genetics of familial idiopathic scoliosis. Clin Orthop Relat Res 462:6–10

    Article  Google Scholar 

  41. Miller NH, Justice CM et al (2005) Identification of candidate regions for familial idiopathic scoliosis. Spine (Phila Pa 1976) 30(10):1181–1187

    Article  Google Scholar 

  42. Moreau A, Akoume Ndong MY et al (2009) Molecular and genetic aspects of idiopathic scoliosis. Blood test for idiopathic scoliosis. Orthopade 38(2):114–116, 118–121

    Google Scholar 

  43. Moreau A, Wang DS et al (2004) Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29(16):1772–1781

    Article  Google Scholar 

  44. Muhlrad A, Yarom R (1982) Contractile protein studies on platelets from patients with idiopathic scoliosis. Haemostasis 11(3):154–160

    CAS  Google Scholar 

  45. Ogilvie JW (2011) Update on prognostic genetic testing in adolescent idiopathic scoliosis (AIS). J Pediatr Orthop 31(1 Suppl):S46–S48

    Article  Google Scholar 

  46. Ogilvie JW, Braun J et al (2006) The search for idiopathic scoliosis genes. Spine (Phila Pa 1976) 31(6):679–681

    Article  Google Scholar 

  47. Peleg I, Eldor A et al (1989) Altered structural and functional properties of myosins, from platelets of idiopathic scoliosis patients. J Orthop Res 7(2):260–265

    Article  CAS  Google Scholar 

  48. Porter RW (2000) Idiopathic scoliosis: the relation between the vertebral canal and the vertebral bodies. Spine (Phila Pa 1976) 25(11):1360–1366

    Article  CAS  Google Scholar 

  49. Porter RW (2001) Can a short spinal cord produce scoliosis? Eur Spine J 10(1):2–9

    Article  CAS  Google Scholar 

  50. Porter RW (2001) The pathogenesis of idiopathic scoliosis: uncoupled neuro-osseous growth? Eur Spine J 10(6):473–481

    Article  CAS  Google Scholar 

  51. Riseborough EJ, Wynne-Davies R (1973) A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Joint Surg Am 55(5):974–982

    CAS  Google Scholar 

  52. Roth M (1981) Idiopathic scoliosis and Scheuermann’s disease: essentially identical manifestations of neuro-vertebral growth disproportion. Radiol Diagn (Berl) 22(3):380–391

    CAS  Google Scholar 

  53. Rousie DL, Deroubaix JP et al (2009) Abnormal connection between lateral and posterior semicircular canal revealed by a new modeling process: origin and physiological consequences. Ann NY Acad Sci 1164:455–457

    Article  Google Scholar 

  54. Sharma S, Gao X et al (2011) Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes. Hum Mol Genet 20(7):1456–1466

    Article  CAS  Google Scholar 

  55. Shyy W, Wang K et al (2010) Evaluation of GPR50, hMel-1B, and ROR-alpha melatonin-related receptors and the etiology of adolescent idiopathic scoliosis. J Pediatr Orthop 30(6):539–543

    Article  Google Scholar 

  56. Staub H (1922) Eine skoliotikerfamilie. Ein Betrag zur Frage der kongenitalen Skoliose und der Hereditat der Skoliosen. Z Orthop Chir 43:1–20

    Google Scholar 

  57. Suk SI, Kim IK et al (1991) A study on platelet function in idiopathic scoliosis. Orthopedics 14(10):1079–1083

    CAS  Google Scholar 

  58. Szalay EA, Bosch P et al (2008) Adolescents with idiopathic scoliosis are not osteoporotic. Spine (Phila Pa 1976) 33(7):802–806

    Article  Google Scholar 

  59. Thevenon A, Pollez B et al (1987) Relationship between kyphosis, scoliosis, and osteoporosis in the elderly population. Spine (Phila Pa 1976) 12(8):744–745

    Article  CAS  Google Scholar 

  60. Vermot J, Pourquie O (2005) Retinoic acid coordinates somitogenesis and left-right patterning in vertebrate embryos. Nature 435(7039):215–220

    Article  CAS  Google Scholar 

  61. Vilhais-Neto GC, Maruhashi M et al (2010) Rere controls retinoic acid signalling and somite bilateral symmetry. Nature 463(7283):953–957

    Article  CAS  Google Scholar 

  62. Wang W, Zhu Z et al (2012) Different curve pattern and other radiographic characteristics in male and female patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 37(18):1586–1592

    Google Scholar 

  63. Ward K, Ogilvie JW et al (2010) Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 35(25):E1455–E1464

    Article  Google Scholar 

  64. Wiener-Vacher SR, Mazda K (1998) Asymmetric otolith vestibulo-ocular responses in children with idiopathic scoliosis. J Pediatr 132(6):1028–1032

    Article  CAS  Google Scholar 

  65. Wise CA, Gao X et al (2008) Understanding genetic factors in idiopathic scoliosis, a complex disease of childhood. Curr Genomics 9(1):51–59

    Article  CAS  Google Scholar 

  66. Wynne-Davies R (1975) Infantile idiopathic scoliosis. Causative factors, particularly in the first six months of life. J Bone Joint Surg Br 57(2):138–141

    CAS  Google Scholar 

  67. Yarom R, Muhlrad A et al (1980) Platelet pathology in patients with idiopathic scoliosis: ultrastructural morphometry, aggregations, X-ray spectrometry, and biochemical analysis. Lab Invest 43(3):208–216

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Cotrel’s Foundation (Paris, France) for actively encouraging and supporting research studies on etiology and prognosis of AIS. None of the authors received financial support for this study.

Conflict of interest

The authors have no conflicts of interest relevant to this article to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lascombes.

About this article

Cite this article

Dayer, R., Haumont, T., Belaieff, W. et al. Idiopathic scoliosis: etiological concepts and hypotheses. J Child Orthop 7, 11–16 (2013). https://doi.org/10.1007/s11832-012-0458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11832-012-0458-3

Keywords

Navigation