Skip to main content

Advertisement

Log in

Advanced imaging of the cervical spine and spinal cord in 22q11.2 deletion syndrome: age-matched, double-cohort, controlled study

  • Original Clinical Article
  • Published:
Journal of Children's Orthopaedics

Abstract

Purpose

The 22q11.2 deletion syndrome is a common genetic syndrome with a wide spectrum of abnormalities. We have previously described multiple anomalies of the upper cervical spine in this disorder. The objective of this study was to use advanced imaging to further define the morphology of the cervical spine and spinal cord in the 22q11.2 deletion syndrome, with a comparison to age-matched controls.

Methods

A total of 32 patients with a 22q11.2 deletion underwent advanced imaging (computed tomography/magnetic resonance imaging; CT/MRI) of the cervical spine. In 27 patients, space available for the cord (SAC); the sagittal diameter of the vertebral body, spinal canal, cerebrospinal fluid (CSF), and spinal cord; and the cross sectional area of the spinal canal, CSF, and spinal cord were measured at each cervical level and compared to 29 age-matched controls. Statistical analysis was performed and potential implications were hypothesized.

Results

In 22q11.2 patients, advanced imaging identified 40 pathologies not evident on plain radiographs with potential mechanical and/or neurological implications. These patients also had significantly smaller values (P ≤ 0.05) of the following parameters at one or more cervical levels, relative to age-matched controls: width of the vertebral body, spinal canal, CSF, and spinal cord; area of the spinal canal, CSF, and spinal cord. Neurologic symptoms were observed in 4/32 patients, with one patient requiring surgical intervention.

Conclusions

Advanced imaging of the cervical spine can detect findings not evident on plain radiographs in the 22q11.2 deletion syndrome. CT and/or MRI may be indicated when there is a high index of suspicion for clinical instability or neurologic compromise in order to rule out dynamic encroachment or impending neurologic sequelae. Spinal canal and spinal cord dimensions are reduced in these patients relative to controls with currently unknown clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a, b

Similar content being viewed by others

References

  1. Cuneo BF (2001) 22q11.2 deletion syndrome: DiGeorge, velocardiofacial, and conotruncal anomaly face syndromes. Curr Opin Pediatr 13(5):465–472. doi:10.1097/00008480-200110000-00014

    Article  CAS  Google Scholar 

  2. Devriendt K, Fryns JP, Mortier G et al (1998) The annual incidence of DiGeorge/velocardiofacial syndrome. J Med Genet 35(9):789–790

    Article  CAS  Google Scholar 

  3. Tézenas Du Montcel S, Mendizabai H, Aymé S et al (1996) Prevalence of 22q11 microdeletion. J Med Genet 33(8):719

    Article  Google Scholar 

  4. Botto LD, May K, Fernhoff PM et al (2003) A population-based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population. Pediatrics 112(1 Pt 1):101–107. doi:10.1542/peds.112.1.101

    Article  Google Scholar 

  5. Hultman CS, Riski JE, Cohen SR et al (2000) Chiari malformation, cervical spine anomalies, and neurologic deficits in velocardiofacial syndrome. Plast Reconstr Surg 106(1):16–24. doi:10.1097/00006534-200007000-00004

    Article  CAS  Google Scholar 

  6. Ming JE, McDonald-McGinn DM, Megerian TE et al (1997) Skeletal anomalies and deformities in patients with deletions of 22q11. Am J Med Genet 72(2):210–215. doi :10.1002/(SICI)1096-8628(19971017)72:2<210::AID-AJMG16>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  7. Siegel-Bartelt J, Armstrong D (1997) Microdeletion 22q11.2: anatomic defects are frequent in the high cervical spine. Am J Med Genet 61:A113 (abstract)

    Google Scholar 

  8. Yamagishi H (2002) The 22q11.2 deletion syndrome. Keio J Med 51(2):77–88

    Article  CAS  Google Scholar 

  9. Bolland E, Manzur AY, Milward TM et al (2000) Velocardiofacial syndrome associated with atrophy of the shoulder girdle muscles and cervicomedullary narrowing. Eur J Paediatr Neurol 4(2):73–76. doi:10.1053/ejpn.2000.0266

    Article  CAS  Google Scholar 

  10. Bassett AS, Chow EW, Husted J et al (2005) Clinical features of 78 adults with 22q11 Deletion Syndrome. Am J Med Genet A 138(4):307–313. doi:10.1002/ajmg.a.30984

    Article  Google Scholar 

  11. Heike CL, Avellino AM, Mirza SK et al (2007) Sleep disturbances in 22q11.2 deletion syndrome: a case with obstructive and central sleep apnea. Cleft Palate Craniofac J 44(3):340–346. doi:10.1597/05-196

    Article  Google Scholar 

  12. Schulze BR, Tariverdian G, Komposch G et al (2001) Misclassification risk of patients with bilateral cleft lip and palate and manifestations of median facial dysplasia: a new variant of del(22q11.2) syndrome? Am J Med Genet 99(4):280–285. doi:10.1002/ajmg.1178

    Article  CAS  Google Scholar 

  13. Ricchetti ET, States L, Hosalkar HS et al (2004) Radiographic study of the upper cervical spine in the 22q11.2 deletion syndrome. J Bone Joint Surg Am 86A(8):1751–1760

    Google Scholar 

  14. Selnes JE, Ross RB, Siegel-Bartelt J (1997) What’s in a face? Defining the characteristic facial changes in microdeletion 22q11.2 by cephalometric analysis. Am J Med Genet 61:A113 (abstract)

    Google Scholar 

  15. Maclean K, Field MJ, Colley AS et al (2004) Kousseff syndrome: a causally heterogeneous disorder. Am J Med Genet A 124(3):307–312. doi:10.1002/ajmg.a.20418

    Article  Google Scholar 

  16. Auerbach JD, Hosalkar HS, Kusuma SK et al (2008) Spinal cord dimensions in children with Klippel-Feil syndrome: a controlled, blinded radiographic analysis with implications for neurologic outcomes. Spine 33(12):1366–1371. doi: 10.1097/BRS.0b013e3181732a22

    Article  Google Scholar 

  17. Arvystas M, Shprintzen RJ (1984) Craniofacial morphology in the velo-cardio-facial syndrome. J Craniofac Genet Dev Biol 4(1):39–45

    CAS  Google Scholar 

  18. Chamberlain WE (1939) Basilar impression (platybasia). A bizarre developmental anomaly of the occipital bone and upper cervical spine with striking and misleading neurologic manifestations. Yale J Biol Med 11:487–496

    CAS  Google Scholar 

  19. Copley LA, Dormans JP (1998) Cervical spine disorders in infants and children. J Am Acad Orthop Surg 6(4):204–214

    CAS  Google Scholar 

  20. Drummond DS (1997) Congenital anomalies of the pediatric cervical spine. In: Bridwell KH, DeWald RL (eds) The textbook of spinal surgery, 2nd edn. Lippincott-Raven, Philadelphia, pp 951–968

    Google Scholar 

  21. Georgopoulos G, Pizzutillo PD, Lee MS (1987) Occipito-atlantal instability in children. A report of five cases and review of the literature. J Bone Joint Surg Am 69(3):429–436

    CAS  Google Scholar 

  22. Havkin N, Tatum SA, Shprintzen RJ (2000) Velopharyngeal insufficiency and articulation impairment in velo-cardio-facial syndrome: the influence of adenoids on phonemic development. Int J Pediatr Otorhinolaryngol 54(2–3):103–110. doi:10.1016/S0165-5876(00)00350-5

    Article  CAS  Google Scholar 

  23. Hensinger RN (1992) Congenital anomalies of the cervical spine. In: Rothman RH, Simeone FA (eds) The spine, 3rd edn. Saunders, Philadelphia, pp 261–314

    Google Scholar 

  24. Hughes JEO, Sundaresan N (1998) Congenital malformations of the base of the skull. In: Clark CR (ed) The cervical spine, 3rd edn. Lippincott-Raven, Philadelphia, pp 311–316

    Google Scholar 

  25. Locke GR, Gardner JI, Van Epps EF (1966) Atlas-dens interval (ADI) in children: a survey based on 200 normal cervical spines. Am J Roentgenol Radium Ther Nucl Med 97(1):135–140

    Article  CAS  Google Scholar 

  26. Powers B, Miller MD, Kramer RS et al (1979) Traumatic anterior atlanto-occipital dislocation. Neurosurgery 4(1):12–17. doi:10.1097/00006123-197901000-00004

    Article  CAS  Google Scholar 

  27. Riolo ML, Moyers RE, McNamara JA et al (1974) Angular measurements. An atlas of craniofacial growth: cephalometric standards from the University School Growth Study, the University of Michigan. Center for Human Growth and Development, University of Michigan, Ann Arbor, pp 23–99

  28. Wadia NH (1967) Myelopathy complicating congenital atlanto-axial dislocation (a study of 28 cases). Brain 90(2):449–472. doi:10.1093/brain/90.2.449

    Article  CAS  Google Scholar 

  29. Wiesel SW, Rothman RH (1979) Occipitoatlantal hypermobility. Spine 4(3):187–191. doi:10.1097/00007632-197905000-00001

    Article  CAS  Google Scholar 

  30. Prasad SS, O’Malley M, Caplan M et al (2003) MRI measurements of the cervical spine and their correlation to Pavlov’s ratio. Spine 28(12):1263–1268. doi:10.1097/00007632-200306150-00009

    Google Scholar 

  31. Gholve PA, Hosalkar HS, Ricchetti ET et al (2007) Occipitalization of the atlas in children. Morphologic classification, associations, and clinical relevance. J Bone Joint Surg Am 89(3):571–578. doi:10.2106/JBJS.F.00527

    Article  Google Scholar 

  32. Hosalkar HS, Sankar WN, Wills BP et al (2008) Congenital osseous anomalies of the upper cervical spine. J Bone Joint Surg Am 90(2):337–348. doi:10.2106/JBJS.G.00014

    Article  Google Scholar 

  33. Wang JC, Nuccion SL, Feighan JE et al (2001) Growth and development of the pediatric cervical spine documented radiographically. J Bone Joint Surg Am 83A(8):1212–1218

    Google Scholar 

  34. Filippi M, Campi A, Colombo B et al (1996) A spinal cord MRI study of benign and secondary progressive multiple sclerosis. J Neurol 243(7):502–505. doi:10.1007/BF00886870

    Article  CAS  Google Scholar 

  35. Kidd D, Thorpe JW, Kendall BE et al (1996) MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 60(1):15–19

    Article  CAS  Google Scholar 

  36. Kidd D, Thorpe JW, Thompson AJ et al (1993) Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple sclerosis. Neurology 43(12):2632–2637

    Article  CAS  Google Scholar 

  37. Stevenson VL, Leary SM, Losseff NA et al (1998) Spinal cord atrophy and disability in MS: a longitudinal study. Neurology 51(1):234–238

    Article  CAS  Google Scholar 

  38. Thorpe JW, Kidd D, Moseley IF et al (1996) Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology 46(2):373–378

    Article  CAS  Google Scholar 

  39. Fujiwara K, Fujimoto M, Owaki H et al (1998) Cervical lesions related to the systemic progression in rheumatoid arthritis. Spine 23(19):2052–2056. doi:10.1097/00007632-199810010-00003

    Article  CAS  Google Scholar 

  40. Okada Y, Ikata T, Yamada H et al (1993) Magnetic resonance imaging study on the results of surgery for cervical compression myelopathy. Spine 18(14):2024–2029

    Article  CAS  Google Scholar 

  41. Penning L, Wilmink JT, van Woerden HH et al (1986) CT myelographic findings in degenerative disorders of the cervical spine: clinical significance. AJR Am J Roentgenol 146(4):793–801

    Article  CAS  Google Scholar 

  42. Takahashi Y, Narusawa K, Shimizu K et al (2006) Enlargement of cervical spinal cord correlates with improvement of motor function in upper extremities after laminoplasty for cervical myelopathy. J Spinal Disord Tech 19(3):194–198. doi:10.1097/01.bsd.0000193821.50146.78

    Article  Google Scholar 

  43. Uchida K, Nakajima H, Sato R et al (2005) Multivariate analysis of the neurological outcome of surgery for cervical compressive myelopathy. J Orthop Sci 10(6):564–573. doi:10.1007/s00776-005-0953-1

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Allen I. Fleishman, PhD, for the technical assistance that he provided in the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis S. Drummond.

About this article

Cite this article

Ricchetti, E.T., Hosalkar, H.S., Gholve, P.A. et al. Advanced imaging of the cervical spine and spinal cord in 22q11.2 deletion syndrome: age-matched, double-cohort, controlled study. J Child Orthop 2, 333–341 (2008). https://doi.org/10.1007/s11832-008-0129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11832-008-0129-6

Keywords

Navigation