Skip to main content
Log in

A Comprehensive Review on Beamforming Optimization Techniques for IRS assisted Energy Harvesting

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Intelligent reflecting surfaces (IRS) recently gained prominence due to their ability to adapt and tweak their configuration in real-time to create an intelligent wireless environment. Hence, it can elevate wireless connectivity, signal strength, data rate, coverage, and mitigate signal blockage or interference in future wireless networks. A comprehensive review of IRSs has been conveyed in this paper, emphasizing beamforming optimization strategies in the realm of energy harvesting with IRS assistance. The discussion encompasses an overview of IRS hardware design, practical IRS prototypes for hardware design, a summary of related works, and an equivalent RLC circuit model. Additionally, an extensive comparative analysis of IRS architecture, shape, size, advantages, drawbacks, and applications is presented, considering existing research. Further, the paper examines the most pivotal cost and economic aspects of IRS to optimize energy harvesting and coverage enhancement. The paper explores beamforming techniques and examines various optimization methods aimed at maximizing the potential of IRS for energy harvesting. Furthermore, the paper delves into the wide range of potential applications that IRS-assisted wireless communication networks can offer. Despite the significant promises of IRS technology, it faces substantial research challenges in optimization. This paper addresses and highlights these challenges and limitations associated with the IRS, paving the way for future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Algorithm 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

IRS:

Intelligent reflecting surface

SWIPT:

Simultaneous wireless information and power transfer

IoT:

Internet of things

B5G:

Beyond 5G

Gbps:

Gigabit per second

EE:

Energy efficiency

URLLC:

Ultra-reliable and low-latency communications

E2E:

End-to-end

QoS:

Quality of services

2D:

Two-dimensional

3D:

Three-dimensional

LIMs:

Large intelligent metasurfaces

SDMs:

Software-controlled metasurfaces

PIS:

Passive intelligent surfaces

D2D:

Device-to-device

FC:

Fully-connected

DC:

Dynamically-connected

SDR:

Semi-definite relaxation

JBFO:

Joint beamforming optimization

MM:

Majorization-minimization

PLS:

Physical layer security

UAV:

Unmanned aerial vehicle

V2X:

Vehicle-to-everything

AI:

Artificial intelligence

FPGA:

Field-programmable gate array

AP:

Access point

GHz:

Gigahertz

DC:

Direct current

AmBC:

Ambient backscatter communications

PEC:

Perfect electric conductor

HFSS:

High-frequency structured simulator

BER:

Bit error rate

WIPT:

Wireless information and power transfer

SIW:

Substrate integrated waveguide

PA:

Power amplifier

UIRS:

Ultra-intelligent reflecting surface

SiO\(_{2}\) :

Silicon-dioxide

AIN:

Aluminium nitride

ISI:

Intersymbol interference

OOK:

On-Off keying

SINR:

Signal-to-interference plus noise ratio

RCI:

Regularized channel inversion

UPA:

Uniform planar array

DAC:

Digital-to-analog converter

E-AoA:

Elevation-angle-of-arrival

E-AoD:

Elevation-angle-of-departure

MISO:

Multiple input single output

AWGN:

Additive white Gaussian noise

UM-MIMO:

Ultra massive-multiple input multiple output

HB:

Hybrid beamforming

AoSA:

Array-of-subarray

Mu:

Multiuser

IIoT:

Industrial-internet-of-things

SDs:

Sensor devices

CWPCN:

Cognitive wireless powered communication network

IRSs:

Intelligent reflecting surfaces

5G:

Fifth-generation

mm:

Millimeter

6G:

Sixth-generation

SE:

Spectral efficiency

eMBB:

Enhanced mobile broadband

mMTC:

Massive machine-type communications

THz:

Terahertz

B6G:

Beyond 6G

EM:

Electromagnetic

LIS:

Large intelligent surfaces

SDS:

Software defined surfaces

RIS:

Reconfigurable intelligent surfaces

PIMs:

Passive intelligent mirrors

SNR:

Signal-to-noise ratio

PC:

Partially-connected

PBFO:

Passive beamforming optimization

AO:

Alternating optimization

SCA:

Successive convex approximation

ADMM:

Alternating direction method of multipliers

M2M:

Machine-to-machine

IoUT:

Internet-of-underwater things

MEC:

Mobile edge computing

FSS:

Frequency selective surfaces

BS:

Base station

PCB:

Printed circuit board

DSP:

Digital signal processing

SRR:

Split-ring resonator

EIRP:

Effective isotropic radiated power

UE:

User equipment

RF:

Radio frequency

WPT:

Wireless power transfer

PAA:

Phased antenna array

FR-4:

Flame retardant-4

VO\(_{2}\) :

Vanadium-dioxide

CIRS:

Channel impulse responses

Si:

Silicon

RSSI:

Received signal strength indication

WNoC:

Wireless network on chip

LC:

Liquid crystal

LOS:

Line-of-sight

IBI:

Inter-band interference

A-AoA:

Azimuth-angle-of-arrival

ADC:

Analog-to-digital converter

A-AoD:

Azimuth-angle-of-departure

NLOS:

Non-line-of-sight

CFO:

Carrier frequency offset

MIMO:

Multiple input multiple output

DoF:

Degree-of-freedom

LSAS:

Large-scale antenna system

DAoSA:

Dynamic AoSA

WET:

Wireless energy transfer

WD:

Wireless device

BCD:

Block coordinate descent

DL:

Downlink

UL:

Uplink

WPHN:

Wireless powered heterogeneous network

RMO:

Riemannian manifold optimization

EH:

Energy harvesting

SD\(_{3}\) :

Robust DRL algorithm

QRM:

Quadrature reflection modulation

SISO:

Single-input single-output

MU:

Multi-user

EHDs:

Energy harvesting devices

FD:

Full-duplex

CSI:

Channel state information

SPCA:

Sequential parametric convex approximation

HAP:

Hybrid access point

DC:

Difference-convex

WPSN:

Wireless powered sensor network

IA:

Inner approximation

SAA:

Sample average approximation

WDs:

Wireless devices

MRT:

Maximum ratio transmission

CVX:

Convex programming

EVD:

Eigenvalue decomposition

SOC:

Second-order cone

I-GRASP:

Improved greedy randomize adaptive search procedure

IUs:

Information users

WDT:

Wireless data transfer

ERs:

Energy receivers

CABC:

Cooperative ambient backscatter communications

MAQ-PG:

Multi-agent Q-mix with policy gradient

APIA:

Alternating pragmatic iterative algorithm

RSMA:

Rate-splitting multiple access

BSO:

Block structured optimization

LC-AO:

Low complexity alternating optimization

SOS1:

Special ordered set of type 1

SA:

Successive approximation

WSP:

Weighted sum power

SPA:

Successive polyblock approximation

IUs:

Information users

mMIMO:

Massive-MIMO

LT:

Legitimate transmitter

AUs:

Aerial users

DQN:

Deep Q-network

AUVs:

Autonomous underwater vehicles

V2I:

Vehicle-to-infrastructure

RAIVC:

Resource allocation for IRS-aided vehicular communications

ASC:

Average secrecy capacity

WVN:

Wireless vehiclar network

AFFG:

Amplify-and-forward fixed gain

DC:

Difference-of-convex

DL:

Deep learning

LISA:

Large intelligent surface/antennas

ORA:

Open research area

Tx:

Transmitter

AIRS:

Amplfying IRS

DACs:

Digital-to-analog converters

PTCD:

Planar tightly coupled dipoles

OpEx:

Operating expenditures

LDT:

Lagrangian dual transformation

LEO:

Low-earth orbit

IWE:

Intelligent wireless ecosystem

WIT:

Wireless information transfer

SDP:

Semi-definite programming

BCD:

Block coordinate descent

DRL:

Deep reinforcement learning

IFC:

Interference channel

IPM:

Interior-point method

SU:

Single-user

FF:

Frequency-flat

CRSNs:

Cognitive radio sensor networks

WPCN:

Wireless-powered communication network

AO-INPM:

AO IRS-aided nonlinear harvested power maximization

ID:

Information decoding

NOMA:

Non-orthogonal multiple access

IR:

Information receiver

ES:

Energy source

IDRs:

Information decoding receivers

TMP:

Turbo message passing

QOPs:

Quadratic optimization problems

QCQP:

Quadratically constrained quadratic program

CSCG:

Circularly symmetric complex Gaussian

ABFO:

Active beamforming optimization

SLA:

Successive linear approximation

EUs:

Energy users

STMO:

Successive target migration optimization

SOCP:

Second-order cone program

PS:

Power-splitting

MAQ-WP:

Multi-agent Q-mix with wolpertinger

CR:

Cognitive radio

PS:

Power-splitting

BSUM:

Block successive upper bound maximization/minimization

WSR:

Weighted sum rate

PS:

Power-splitting

RL:

Reformulation linearization

PB:

Power beacon

MO:

Monotonic optimization

Eves:

Eavesdroppers

AN:

Artificial noise

ANN:

Artificial neural network

LR:

Legitimate receiver

FIRS:

Flying IRS

DDPG:

Deep deterministic policy gradient

RSU:

Roadside unit

V2V:

Vehicle-to-vehicle

VANET:

Vehicle ad-hoc network

SOP:

Secrecy outage probability

DF:

Decode-and-forward

CCM:

Complex circle manifold

CE:

Channel estimation

ACK:

Acknowledgement

PUC:

Potential use cases

LDO:

Low-dropout regulator

Rx:

Receiver

ASICs:

Application-specific integrated circuits

LEs:

Loading elements

CaEx:

Capital expenditures

TCO:

Total cost of ownership

PBMO:

Penalty-based manifold optimization

ISAC:

Integrated sensing and communication

IWEs:

Intelligent wireless ecosystems

References

  1. Saad W, Bennis M, Chen M (2020) A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems. IEEE Network 34(3):134–142. https://doi.org/10.1109/mnet.001.1900287

    Article  Google Scholar 

  2. Banafaa M, Shayea I, Din J, Hadri Azmi M, Alashbi A, Ibrahim Daradkeh Y et al (2023) 6G Mobile Communication Technology: Requirements, Targets, Applications, Challenges, Advantages, and Opportunities. Alex Eng J 64:245–274. https://doi.org/10.1016/j.aej.2022.08.017

    Article  Google Scholar 

  3. Wu Q, Zhang S, Zheng B, You C, Zhang R (2021) Intelligent Reflecting Surface-Aided Wireless Communications: A Tutorial. IEEE Trans Commun 69(5):3313–3351. https://doi.org/10.1109/tcomm.2021.3051897

    Article  Google Scholar 

  4. Imoize AL, Obakhena HI, Anyasi FI, Sur SN (2022) A Review of Energy Efficiency and Power Control Schemes in Ultra-Dense Cell-Free Massive MIMO Systems for Sustainable 6G Wireless Communication. Sustainability. 14(17):11100. https://doi.org/10.3390/su141711100

    Article  Google Scholar 

  5. Liu Q, Sun S, Rong B, Kadoch M (2021) Intelligent Reflective Surface Based 6G Communications for Sustainable Energy Infrastructure. IEEE Wirel Commun 28(6):49–55. https://doi.org/10.1109/mwc.016.2100179

    Article  Google Scholar 

  6. Renzo MD, Debbah M, Phan-Huy DT, Zappone A, Alouini MS, Yuen C, et al (2019) Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come. EURASIP Journal on Wireless Communications and Networking. 2019(1). https://doi.org/10.1186/s13638-019-1438-9

  7. Wu Q, Zhang R (2020) Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network. IEEE Commun Mag 58(1):106–112. https://doi.org/10.1109/mcom.001.1900107

    Article  Google Scholar 

  8. Long W, Chen R, Moretti M, Zhang W, Li J (2021) A Promising Technology for 6G Wireless Networks: Intelligent Reflecting Surface. Journal of Communications and Information Networks. 6(1):1–16. https://doi.org/10.23919/jcin.2021.9387701

    Article  Google Scholar 

  9. Das P, Basak S, Vishwakarma P, Singh AK, Sur SN (2023) Performance analysis of IRS-aided multi-user millimeter wave communications system. Int J Inf Technol 16(2):799–808. https://doi.org/10.1007/s41870-023-01660-6

    Article  Google Scholar 

  10. Le CB, Do DT, Sur SN (2021) In: Reconfigurable Intelligent Surface (RIS)-Assisted Wireless Systems: Potentials for 6G and a Case Study. Springer, Singapore, pp 367–378

    Google Scholar 

  11. Sur SN, Bera R (2021) Intelligent reflecting surface assisted MIMO communication system: A review. Physical Communication. 47:101386. https://doi.org/10.1016/j.phycom.2021.101386

    Article  Google Scholar 

  12. Sur SN, Singh AK, Kandar D, Silva A, Nguyen ND (2022) Intelligent Reflecting Surface Assisted Localization: Opportunities and Challenges. Electronics 11(9):1411. https://doi.org/10.3390/electronics11091411

    Article  Google Scholar 

  13. Hassouna S, Jamshed MA, Rains J, Kazim JR, Rehman MU, Abualhayja M et al (2023) A survey on reconfigurable intelligent surfaces: Wireless communication perspective. IET Commun 17(5):497–537. https://doi.org/10.1049/cmu2.12571

    Article  Google Scholar 

  14. Bjornson E, Wymeersch H, Matthiesen B, Popovski P, Sanguinetti L, de Carvalho E (2022) Reconfigurable Intelligent Surfaces: A signal processing perspective with wireless applications. IEEE Signal Process Mag 39(2):135–158. https://doi.org/10.1109/msp.2021.3130549

    Article  Google Scholar 

  15. Gong S, Lu X, Hoang DT, Niyato D, Shu L, Kim DI et al (2020) Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey. IEEE Communications Surveys & amp Tutorials. 22(4):2283–2314. https://doi.org/10.1109/comst.2020.3004197

    Article  Google Scholar 

  16. Ji Z, Qin Z, Parini CG. Reconfigurable Intelligent Surface Assisted Device-to-Device Communications. arXiv

  17. Chen Y, Ai B, Zhang H, Niu Y, Song L, Han Z et al (2021) Reconfigurable Intelligent Surface Assisted Device-to-Device Communications. IEEE Trans Wireless Commun 20(5):2792–2804. https://doi.org/10.1109/twc.2020.3044302

    Article  Google Scholar 

  18. Wu Q, Zhang R (2019) Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans Wireless Commun 18(11):5394–5409. https://doi.org/10.1109/twc.2019.2936025

    Article  Google Scholar 

  19. Wu Q, Zhang R (2020) Joint Active and Passive Beamforming Optimization for Intelligent Reflecting Surface Assisted SWIPT Under QoS Constraints. IEEE J Sel Areas Commun 38(8):1735–1748. https://doi.org/10.1109/jsac.2020.3000807

    Article  Google Scholar 

  20. Dajer M, Ma Z, Piazzi L, Prasad N, Qi XF, Sheen B et al (2022) Reconfigurable intelligent surface: design the channel - a new opportunity for future wireless networks. Digital Communications and Networks. 8(2):87–104. https://doi.org/10.1016/j.dcan.2021.11.002

    Article  Google Scholar 

  21. Sharma PK, Garg P (2021) Intelligent Reflecting Surfaces to Achieve the Full-Duplex Wireless Communication. IEEE Commun Lett 25(2):622–626. https://doi.org/10.1109/lcomm.2020.3033585

    Article  Google Scholar 

  22. Arzykulov S, Nauryzbayev G, Celik A, Eltawil AM (2022) RIS-Assisted Full-Duplex Relay Systems. IEEE Syst J 16(4):5729–5740. https://doi.org/10.1109/jsyst.2022.3189850

    Article  Google Scholar 

  23. Taneja A, Rani S, Alhudhaif A, Koundal D, Gündüz ES (2022) An optimized scheme for energy efficient wireless communication via intelligent reflecting surfaces. Expert Syst Appl 190:116106. https://doi.org/10.1016/j.eswa.2021.116106

    Article  Google Scholar 

  24. Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR (2012) An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. IEEE Antennas Propag Mag 54(2):10–35. https://doi.org/10.1109/map.2012.6230714

    Article  Google Scholar 

  25. Basar E, Renzo MD, Rosny JD, Debbah M, Alouini MS, Zhang R (2019) Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access. 7:116753–116773. https://doi.org/10.1109/access.2019.2935192

    Article  Google Scholar 

  26. Liang YC, Long R, Zhang Q, Chen J, Cheng HV, Guo H (2019) Large Intelligent Surface/Antennas (LISA): Making Reflective Radios Smart. Journal of Communications and Information Networks. 4(2):40–50. https://doi.org/10.23919/jcin.2019.8917871

    Article  Google Scholar 

  27. ElMossallamy MA, Zhang H, Song L, Seddik KG, Han Z, Li GY (2020) Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities. IEEE Transactions on Cognitive Communications and Networking. 6(3):990–1002. https://doi.org/10.1109/tccn.2020.2992604

    Article  Google Scholar 

  28. Di Renzo M, Zappone A, Debbah M, Alouini MS, Yuen C, de Rosny J et al (2020) Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead. IEEE J Sel Areas Commun 38(11):2450–2525. https://doi.org/10.1109/jsac.2020.3007211

    Article  Google Scholar 

  29. Okogbaa FC, Ahmed QZ, Khan FA, Abbas WB, Che F, Zaidi SAR et al (2022) Design and Application of Intelligent Reflecting Surface (IRS) for Beyond 5G Wireless Networks: A Review. Sensors. 22(7):2436. https://doi.org/10.3390/s22072436

    Article  Google Scholar 

  30. Saifullah Y, He Y, Boag A, Yang G, Xu F (2022) Recent Progress in Reconfigurable and Intelligent Metasurfaces: A Comprehensive Review of Tuning Mechanisms, Hardware Designs, and Applications (Adv. Sci. 33/2022). Advanced Science.9(33). https://doi.org/10.1002/advs.202270210

  31. Rana B, Cho SS, Hong IP (2023) Review Paper on Hardware of Reconfigurable Intelligent Surfaces. IEEE Access. 11:29614–29634. https://doi.org/10.1109/access.2023.3261547

    Article  Google Scholar 

  32. Basar E, Alexandropoulos GC, Liu Y, Wu Q, Jin S, Yuen C, et al. Reconfigurable Intelligent Surfaces for 6G: Emerging Hardware Architectures, Applications, and Open Challenges. arXiv

  33. Liu Y, Liu X, Mu X, Hou T, Xu J, Di Renzo M et al (2021) Reconfigurable Intelligent Surfaces: Principles and Opportunities. IEEE Communications Surveys amp; Tutorials. 23(3):1546–1577. https://doi.org/10.1109/comst.2021.3077737

    Article  Google Scholar 

  34. Rengarajan SR, Rahmat-Samii Y (2000) The field equivalence principle: illustration of the establishment of the non-intuitive null fields. IEEE Antennas Propag Mag 42(4):122–128. https://doi.org/10.1109/74.868058

    Article  Google Scholar 

  35. Zhu BO, Chen K, Jia N, Sun L, Zhao J, Jiang T, et al (2014) Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Scientific Reports.4(1). https://doi.org/10.1038/srep04971

  36. Chen HT, Taylor AJ, Yu N (2016) A review of metasurfaces: physics and applications. Rep Prog Phys 79(7):076401. https://doi.org/10.1088/0034-4885/79/7/076401

    Article  Google Scholar 

  37. Liu F, Pitilakis A, Mirmoosa MS, Tsilipakos O, Wang X, Tasolamprou AC, et al (2018) Programmable Metasurfaces: State of the Art and Prospects. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE

  38. Liu F, Tsilipakos O, Pitilakis A, Tasolamprou AC, Mirmoosa MS, Kantartzis NV et al (2019) Intelligent Metasurfaces with Continuously Tunable Local Surface Impedance for Multiple Reconfigurable Functions. Phys Rev Appl 11(4):044024. https://doi.org/10.1103/physrevapplied.11.044024

    Article  Google Scholar 

  39. Koziel S (2013) Surrogatebased Modeling And Optimization Applications In Engineering. New York Inc., Springer-Verlag

    Book  Google Scholar 

  40. Pozar DM (2005) Microwave Engineering (3th Edition). New York JohnWiley Sons

  41. Abeywickrama S, Zhang R, Wu Q, Yuen C (2020) Intelligent Reflecting Surface: Practical Phase Shift Model and Beamforming Optimization. IEEE Trans Commun 68(9):5849–5863. https://doi.org/10.1109/tcomm.2020.3001125

    Article  Google Scholar 

  42. Ndjiongue AR, Ngatched TMN, Dobre OA, Haas H (2021) Design of a Power Amplifying-RIS for Free-Space Optical Communication Systems. IEEE Wirel Commun 28(6):152–159. https://doi.org/10.1109/mwc.001.2100232

    Article  Google Scholar 

  43. Palomares-Caballero Á, Molero C, Alex-Amor A, Parellada-Serrano I, Gamiz F, Padilla P, et al (2021) Metamaterial-Based Reconfigurable Intelligent Surface: 3-D Meta-Atoms Controlled by Graphene Structures. https://doi.org/10.36227/techrxiv.14479290.v1

  44. Zhang J, Xiong R, Liu J, Mi T, Qiu RC. Design and Prototyping of Transmissive RIS-Aided Wireless Communication. arXiv

  45. Ma X, Zhou Y, Luo Q, Ma Y, Stylianopoulos K, Alexandropoulos GC. \(1\)-Bit SubTHz RIS with Planar Tightly Coupled Dipoles: Beam Shaping and Prototypes. arXiv

  46. Wu L, Lou K, Ke J, Liang J, Luo Z, Dai JY et al (2022) A Wideband Amplifying Reconfigurable Intelligent Surface. IEEE Trans Antennas Propag 70(11):10623–10631. https://doi.org/10.1109/tap.2022.3187137

    Article  Google Scholar 

  47. Sievenpiper DF, Schaffner JH, Song HJ, Loo RY, Tangonan G (2003) Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans Antennas Propag 51(10):2713–2722. https://doi.org/10.1109/tap.2003.817558

    Article  Google Scholar 

  48. Jeong J, Oh JH, Lee SY, Park Y, Wi SH (2022) An Improved Path-Loss Model for Reconfigurable-Intelligent-Surface-Aided Wireless Communications and Experimental Validation. IEEE Access. 10:98065–98078. https://doi.org/10.1109/access.2022.3205117

    Article  Google Scholar 

  49. Guirado R, Perez-Palomino G, Cano-Garcia M, Geday MA, Carrasco E (2022) mm-Wave Metasurface Unit Cells Achieving Millisecond Response Through Polymer Network Liquid Crystals. IEEE Access. 10:127928–127938. https://doi.org/10.1109/access.2022.3226601

    Article  Google Scholar 

  50. Zhao S, Langwieser R, Mecklenbraeuker CF (2021) Reconfigurable digital metasurface for 3-bit phase encoding. WSA2021; 25th International ITG Workshop on Smart Antennas, French Riviera, France, p 1-6

  51. Rossanese M, Mursia P, Garcia-Saavedra A, Sciancalepore V, Asadi A, Costa-Perez X (2024) Design and validation of scalable reconfigurable intelligent surfaces. Comput Netw 241:110208. https://doi.org/10.1016/j.comnet.2024.110208

    Article  Google Scholar 

  52. Ntontin K, Boulogeorgos AAA, Abadal S, Mesodiakaki A, Chatzinotas S, Ottersten B (2024) Perpetual Reconfigurable Intelligent Surfaces Through In-Band Energy Harvesting: Architectures, Protocols, and Challenges. IEEE Vehicular Technology Magazine.p. 2–10. https://doi.org/10.1109/mvt.2023.3344994

  53. Shen Z, Li W, Jin B, Zhao D (2024) A liquid crystal-based multi-bit terahertz reconfigurable intelligent surface. APL Photonics.9(1). https://doi.org/10.1063/5.0176272

  54. Jia X, Tan H, Dong X, Ye F, Cui H, Chen L (2024) Dual-Polarized Reconfigurable Manipulation Based on Flexible-Printed Intelligent Reflection Surface. Photonics. 11(1):69. https://doi.org/10.3390/photonics11010069

    Article  Google Scholar 

  55. Ouyang M, Gao F, Wang Y, Zhang S, Li P, Ren J (2023) Computer Vision-Aided Reconfigurable Intelligent Surface-Based Beam Tracking: Prototyping and Experimental Results. IEEE Transactions on Wireless Communications. p. 1–1. https://doi.org/10.1109/twc.2023.3264752

  56. Rains J, ur Rehman Kazim J, Tukmanov A, Cui TJ, Zhang L, Abbasi QH, et al (2023) High-Resolution Programmable Scattering for Wireless Coverage Enhancement: An Indoor Field Trial Campaign. IEEE Transactions on Antennas and Propagation. 71(1):518–530. https://doi.org/10.1109/tap.2022.3216555

  57. Araghi A, Khalily M, Safaei M, Bagheri A, Singh V, Wang F et al (2022) Reconfigurable Intelligent Surface (RIS) in the Sub-6 GHz Band: Design, Implementation, and Real-World Demonstration. IEEE Access. 10:2646–2655. https://doi.org/10.1109/access.2022.3140278

    Article  Google Scholar 

  58. Da Silva LG, Xiao P, S AC (2022) A 2-bit Tunable Unit Cell for 6G Reconfigurable Intelligent Surface Application. In: 2022 16th European Conference on Antennas and Propagation (EuCAP). IEEE

  59. Fara R, Ratajczak P, Phan-Huy DT, Ourir A, Renzo MD, de Rosny J (2022) A Prototype of Reconfigurable Intelligent Surface with Continuous Control of the Reflection Phase. IEEE Wirel Commun 29(1):70–77. https://doi.org/10.1109/mwc.007.00345

    Article  Google Scholar 

  60. Trichopoulos GC, Theofanopoulos P, Kashyap B, Shekhawat A, Modi A, Osman T et al (2022) Design and Evaluation of Reconfigurable Intelligent Surfaces in Real-World Environment. IEEE Open Journal of the Communications Society. 3:462–474. https://doi.org/10.1109/ojcoms.2022.3158310

    Article  Google Scholar 

  61. Tang J, Cui M, Xu S, Dai L, Yang F, Li M. Transmissive RIS for 6G Communications: Design, Prototyping, and Experimental Demonstrations. arXiv

  62. Clerckx B, Kim J, Choi KW, Kim DI (2022) Foundations of Wireless Information and Power Transfer: Theory, Prototypes, and Experiments. Proc IEEE 110(1):8–30. https://doi.org/10.1109/jproc.2021.3132369

    Article  Google Scholar 

  63. Tran NM, Amri MM, Park JH, Kim DI, Choi KW (2022) Multifocus Techniques for Reconfigurable Intelligent Surface-Aided Wireless Power Transfer: Theory to Experiment. IEEE Internet Things J 9(18):17157–17171. https://doi.org/10.1109/jiot.2022.3195948

    Article  Google Scholar 

  64. Hwang M, Youn Y, Chang S, Kim D, Lee C, An D, et al (2022) Sensor-integrated RIS Unit Element featuring Mutual Coupling Reduction. In: 2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). IEEE

  65. Rossanese M, Mursia P, Garcia-Saavedra A, Sciancalepore V, Asadi A, Costa-Perez X (2022) Designing, building, and characterizing RF switch-based reconfigurable intelligent surfaces. In: Proceedings of the 16th ACM Workshop on Wireless Network Testbeds, Experimental evaluation amp; CHaracterization. ACM MobiCom ’22. ACM

  66. Matos R, Pala N (2022) VO2-based ultra-reconfigurable intelligent reflective surface for 5G applications. Scientific Reports. 12(1). https://doi.org/10.1038/s41598-022-08458-9

  67. Imani MF, Abadal S, del Hougne P (2022) Metasurface-Programmable Wireless Network-On-Chip. Advanced Science. 9(26). https://doi.org/10.1002/advs.202201458

  68. Rana B, Cho SS, Hong IP (2022) Parameters and Measurement Techniques of Reconfigurable Intelligent Surfaces. Micromachines. 13(11):1841. https://doi.org/10.3390/mi13111841

    Article  Google Scholar 

  69. Guirado R, Perez-Palomino G, Ferreras M, Carrasco E, Cano-Garcia M (2022) Dynamic Modeling of Liquid Crystal-Based Metasurfaces and Its Application to Reducing Reconfigurability Times. IEEE Trans Antennas Propag 70(12):11847–11857. https://doi.org/10.1109/tap.2022.3209734

    Article  Google Scholar 

  70. Pei X, Yin H, Tan L, Cao L, Li Z, Wang K et al (2021) RIS-Aided Wireless Communications: Prototyping, Adaptive Beamforming, and Indoor/Outdoor Field Trials. IEEE Trans Commun 69(12):8627–8640. https://doi.org/10.1109/tcomm.2021.3116151

    Article  Google Scholar 

  71. Gros JB, Popov V, Odit MA, Lenets V, Lerosey G (2021) A Reconfigurable Intelligent Surface at mmWave Based on a Binary Phase Tunable Metasurface. IEEE Open Journal of the Communications Society. 2:1055–1064. https://doi.org/10.1109/ojcoms.2021.3076271

    Article  Google Scholar 

  72. Hu Q, Zeng X, Mao C, Yang H, Wu Q, Tang J, et al (2021) Design of a Novel 2-bit Wideband Beam-Scanning Reconfigurable Intelligent Surface. In: 2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM). IEEE

  73. Zeng X, Hu Q, Mao C, Yang H, Wu Q, Tang J, et al (2021) High-Accuracy Reconfigurable Intelligent Surface Using Independently Controllable Methods. In: 2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM). IEEE

  74. Amri MM, Tran NM, Choi KW (2021) Reconfigurable Intelligent Surface-Aided Wireless Communications: Adaptive Beamforming and Experimental Validations. IEEE Access. 9:147442–147457. https://doi.org/10.1109/access.2021.3124319

    Article  Google Scholar 

  75. Li K, Naderi Y, Muncuk U, Chowdhury KR (2021) iSurface: Self-Powered Reconfigurable Intelligent Surfaces with Wireless Power Transfer. IEEE Commun Mag 59(11):109–115. https://doi.org/10.1109/mcom.111.2001109

    Article  Google Scholar 

  76. Molero C, Palomares-Caballero A, Alex-Amor A, Parellada-Serrano I, Gamiz F, Padilla P et al (2021) Metamaterial-Based Reconfigurable Intelligent Surface: 3D Meta-Atoms Controlled by Graphene Structures. IEEE Commun Mag 59(6):42–48. https://doi.org/10.1109/mcom.001.2001161

    Article  Google Scholar 

  77. Rains J, ur Rehman Kazim J, Zhang L, Abbasi QH, Imran M, Tukmanov A (2021) 2.75-Bit Reflecting Unit Cell Design for Reconfigurable Intelligent Surfaces. In: 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE

  78. Alamzadeh I, Alexandropoulos GC, Shlezinger N, Imani MF (2021) A reconfigurable intelligent surface with integrated sensing capability. Scientific Reports. 11(1). https://doi.org/10.1038/s41598-021-99722-x

  79. Gradoni G, Renzo MD (2021) End-to-End Mutual Coupling Aware Communication Model for Reconfigurable Intelligent Surfaces: An Electromagnetic-Compliant Approach Based on Mutual Impedances. IEEE Wireless Communications Letters. 10(5):938–942. https://doi.org/10.1109/lwc.2021.3050826

    Article  Google Scholar 

  80. Dai L, Wang B, Wang M, Yang X, Tan J, Bi S et al (2020) Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results. IEEE Access. 8:45913–45923. https://doi.org/10.1109/access.2020.2977772

    Article  Google Scholar 

  81. Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q (2014) Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science & amp Applications. 3(10):e218–e218. https://doi.org/10.1038/lsa.2014.99

    Article  Google Scholar 

  82. Kaina N, Dupré M, Fink M, Lerosey G (2014) Hybridized resonances to design tunable binary phase metasurface unit cells. Opt Express 22(16):18881. https://doi.org/10.1364/oe.22.018881

    Article  Google Scholar 

  83. Kamoda H, Iwasaki T, Tsumochi J, Kuki T, Hashimoto O (2011) 60-GHz Electronically Reconfigurable Large Reflectarray Using Single-Bit Phase Shifters. IEEE Trans Antennas Propag 59(7):2524–2531. https://doi.org/10.1109/tap.2011.2152338

    Article  Google Scholar 

  84. Holloway CL, Mohamed MA, Kuester EF, Dienstfrey A (2005) Reflection and Transmission Properties of a Metafilm: With an Application to a Controllable Surface Composed of Resonant Particles. IEEE Trans Electromagn Compat 47(4):853–865. https://doi.org/10.1109/temc.2005.853719

    Article  Google Scholar 

  85. Rossanese M, Garcia-Saavedra A, Lutu AE, Costa PX (2023) Data-driven Analysis of the Cost-Performance Trade-off of Reconfigurable Intelligent Surfaces in a Production Network. Proceedings of the ACM on Networking. 1(CoNEXT3):1–20. https://doi.org/10.1145/3629134

    Article  Google Scholar 

  86. Lombardo A (2019) Cost analysis of orchestrated 5G networks for broadcasting. European Broadcasting Union (EBU) Technical Review, Geneva, Switzerland

  87. Johansson K, Furuskar A, Karlsson P, Zander J. Relation between base station characteristics and cost structure in cellular systems. In: 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No.04TH8754). PIMRC-04. IEEE

  88. Oughton EJ, Frias Z, van der Gaast S, van der Berg R (2019) Assessing the capacity, coverage and cost of 5G infrastructure strategies: Analysis of the Netherlands. Telematics Inform 37:50–69. https://doi.org/10.1016/j.tele.2019.01.003

    Article  Google Scholar 

  89. Rendon Schneir J, Ajibulu A, Konstantinou K, Bradford J, Zimmermann G, Droste H et al (2019) A business case for 5G mobile broadband in a dense urban area. Telecommunications Policy. 43(7):101813. https://doi.org/10.1016/j.telpol.2019.03.002

    Article  Google Scholar 

  90. Cheng X, Hu Y, Varga L (2022) 5G network deployment and the associated energy consumption in the UK: A complex systems’ exploration. Technol Forecast Soc Chang 180:121672. https://doi.org/10.1016/j.techfore.2022.121672

    Article  Google Scholar 

  91. Balanis C (2007) Antenna Theory: Analysis and Design. John Wiley Sons Inc, Hoboken, New Jersey, USA

    Google Scholar 

  92. Kutty S, Sen D (2016) Beamforming for Millimeter Wave Communications: An Inclusive Survey. IEEE Communications Surveys amp; Tutorials. 18(2):949–973. https://doi.org/10.1109/comst.2015.2504600

    Article  Google Scholar 

  93. Lin C, Li GY (2015) Indoor Terahertz Communications: How Many Antenna Arrays Are Needed? IEEE Trans Wireless Commun 14(6):3097–3107. https://doi.org/10.1109/twc.2015.2401560

    Article  Google Scholar 

  94. Lin C, Li GY (2016) Energy-Efficient Design of Indoor mmWave and Sub-THz Systems with Antenna Arrays. IEEE Transactions on Wireless Communications. p. 1–1. https://doi.org/10.1109/twc.2016.2543733

  95. Yuan H, Yang N, Yang K, Han C, An J (2020) Hybrid Beamforming for Terahertz Multi-Carrier Systems Over Frequency Selective Fading. IEEE Trans Commun 68(10):6186–6199. https://doi.org/10.1109/tcomm.2020.3008699

    Article  Google Scholar 

  96. Alkhateeb A, Heath RW (2016) Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems. IEEE Trans Commun 64(5):1801–1818. https://doi.org/10.1109/tcomm.2016.2549517

    Article  Google Scholar 

  97. Han C, Bicen AO, Akyildiz IF (2015) Multi-Ray Channel Modeling and Wideband Characterization for Wireless Communications in the Terahertz Band. IEEE Trans Wireless Commun 14(5):2402–2412. https://doi.org/10.1109/twc.2014.2386335

    Article  Google Scholar 

  98. You L, Gao X, Li GY, Xia XG, Ma N (2017) BDMA for Millimeter-Wave/Terahertz Massive MIMO Transmission With Per-Beam Synchronization. IEEE J Sel Areas Commun 35(7):1550–1563. https://doi.org/10.1109/jsac.2017.2699100

    Article  Google Scholar 

  99. Song S, Liu D, Wang F (2018) A Frequency Offset Estimation Algorithm Based on Under-Sampling for THz Communication. In: 2018 10th International Conference on Communication Software and Networks (ICCSN). IEEE

  100. Wu WD, Lee CC, Wang CH, Cc C (2007) Signal-to-Interference-Plus-Noise Ratio Analysis for Direct-Sequence Ultra-Wideband Systems in Generalized Saleh-Valenzuela Channels. IEEE Journal of Selected Topics in Signal Processing. 1(3):483–497. https://doi.org/10.1109/jstsp.2007.906642

    Article  Google Scholar 

  101. Sathananthan K, Tellambura C (2001) Probability of error calculation of OFDM systems with frequency offset. IEEE Trans Commun 49(11):1884–1888. https://doi.org/10.1109/26.966051

    Article  Google Scholar 

  102. Park S, Park J, Yazdan A, Heath RW (2017) Exploiting Spatial Channel Covariance for Hybrid Precoding in Massive MIMO Systems. IEEE Trans Signal Process 65(14):3818–3832. https://doi.org/10.1109/tsp.2017.2701321

    Article  MathSciNet  Google Scholar 

  103. Rappaport TS, Heath RW Jr, Daniels RC, Murdock JN (2015) Millimeter wave wireless communications. Pearson Education Inc, USA

    Google Scholar 

  104. Ahmed I, Khammari H, Shahid A (2017) Resource Allocation for Transmit Hybrid Beamforming in Decoupled Millimeter Wave Multiuser-MIMO Downlink. IEEE Access. 5:170–182. https://doi.org/10.1109/access.2016.2634096

    Article  Google Scholar 

  105. Kim T, Park J, Seol JY, Jeong S, Cho J, Roh W (2013) Tens of Gbps support with mmWave beamforming systems for next generation communications. In: 2013 IEEE Global Communications Conference (GLOBECOM). IEEE

  106. Han S, Cl I, Xu Z, Rowell C (2015) Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun Mag 53(1):186–194. https://doi.org/10.1109/mcom.2015.7010533

    Article  Google Scholar 

  107. Zhang X, Molisch AF, Kung SY (2005) Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection. IEEE Trans Signal Process 53(11):4091–4103. https://doi.org/10.1109/tsp.2005.857024

    Article  MathSciNet  Google Scholar 

  108. Molisch AF, Ratnam VV, Han S, Li Z, Nguyen SLH, Li L et al (2017) Hybrid Beamforming for Massive MIMO: A Survey. IEEE Commun Mag 55(9):134–141. https://doi.org/10.1109/mcom.2017.1600400

    Article  Google Scholar 

  109. Zhang E, Huang C (2014) On Achieving Optimal Rate of Digital Precoder by RF-Baseband Codesign for MIMO Systems. In: 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall). IEEE

  110. Yu X, Shen JC, Zhang J, Letaief KB (2016) Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems. IEEE Journal of Selected Topics in Signal Processing. 10(3):485–500. https://doi.org/10.1109/jstsp.2016.2523903

    Article  Google Scholar 

  111. Ning B, Tian Z, Mei W, Chen Z, Han C, Li S et al (2023) Beamforming Technologies for Ultra-Massive MIMO in Terahertz Communications. IEEE Open Journal of the Communications Society. 4:614–658. https://doi.org/10.1109/ojcoms.2023.3245669

    Article  Google Scholar 

  112. Ahmed I, Khammari H, Shahid A, Musa A, Kim KS, De Poorter E, et al (2018) A Survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives. IEEE Communications Surveys amp; Tutorials. 20(4):3060–3097. https://doi.org/10.1109/comst.2018.2843719

  113. Gao X, Dai L, Han S, I CL, Heath RW, (2016) Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems With Large Antenna Arrays. IEEE Journal on Selected Areas in Communications. 34(4):998–1009. https://doi.org/10.1109/jsac.2016.2549418

  114. Lin C, Li GY (2015) Adaptive Beamforming With Resource Allocation for Distance-Aware Multi-User Indoor Terahertz Communications. IEEE Trans Commun 63(8):2985–2995. https://doi.org/10.1109/tcomm.2015.2440356

    Article  Google Scholar 

  115. Lin C, Li GY, Wang L (2017) Subarray-Based Coordinated Beamforming Training for mmWave and Sub-THz Communications. IEEE J Sel Areas Commun 35(9):2115–2126. https://doi.org/10.1109/jsac.2017.2720038

    Article  Google Scholar 

  116. Park S, Alkhateeb A, Heath RW (2017) Dynamic Subarrays for Hybrid Precoding in Wideband mmWave MIMO Systems. IEEE Trans Wireless Commun 16(5):2907–2920. https://doi.org/10.1109/twc.2017.2671869

    Article  Google Scholar 

  117. Zhang D, Wang Y, Li X, Xiang W (2018) Hybridly Connected Structure for Hybrid Beamforming in mmWave Massive MIMO Systems. IEEE Trans Commun 66(2):662–674. https://doi.org/10.1109/tcomm.2017.2756882

    Article  Google Scholar 

  118. Jin J, Xiao C, Chen W, Wu Y (2019) Channel-Statistics-Based Hybrid Precoding for Millimeter-Wave MIMO Systems With Dynamic Subarrays. IEEE Trans Commun 67(6):3991–4003. https://doi.org/10.1109/tcomm.2019.2899628

    Article  Google Scholar 

  119. Yang F, Wang JB, Cheng M, Wang JY, Lin M, Cheng J (2020) A Partially Dynamic Subarrays Structure for Wideband mmWave MIMO Systems. IEEE Trans Commun 68(12):7578–7592. https://doi.org/10.1109/tcomm.2020.3020833

    Article  Google Scholar 

  120. Yan L, Han C, Yuan J (2020) A Dynamic Array-of-Subarrays Architecture and Hybrid Precoding Algorithms for Terahertz Wireless Communications. IEEE J Sel Areas Commun 38(9):2041–2056. https://doi.org/10.1109/jsac.2020.3000876

    Article  Google Scholar 

  121. Zhang S, Zhang R (2020) Capacity Characterization for Intelligent Reflecting Surface Aided MIMO Communication. IEEE J Sel Areas Commun 38(8):1823–1838. https://doi.org/10.1109/jsac.2020.3000814

    Article  Google Scholar 

  122. Wu Q, Zhang R (2018) Intelligent Reflecting Surface Enhanced Wireless Network: Joint Active and Passive Beamforming Design. In: 2018 IEEE Global Communications Conference (GLOBECOM). IEEE

  123. Huang C, Zappone A, Debbah M, Yuen C (2018) Achievable Rate Maximization by Passive Intelligent Mirrors. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE

  124. Huang C, Alexandropoulos GC, Yuen C, Debbah M (2019) Indoor Signal Focusing with Deep Learning Designed Reconfigurable Intelligent Surfaces. In: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE

  125. Ye J, Guo S, Alouini MS (2020) Joint Reflecting and Precoding Designs for SER Minimization in Reconfigurable Intelligent Surfaces Assisted MIMO Systems. IEEE Trans Wireless Commun 19(8):5561–5574. https://doi.org/10.1109/twc.2020.2994455

    Article  Google Scholar 

  126. Huang C, Zappone A, Alexandropoulos GC, Debbah M, Yuen C (2019) Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. IEEE Trans Wireless Commun 18(8):4157–4170. https://doi.org/10.1109/twc.2019.2922609

    Article  Google Scholar 

  127. Wu Q, Zhang R (2020) Beamforming Optimization for Wireless Network Aided by Intelligent Reflecting Surface With Discrete Phase Shifts. IEEE Trans Commun 68(3):1838–1851. https://doi.org/10.1109/tcomm.2019.2958916

    Article  Google Scholar 

  128. Yu X, Xu D, Schober R (2019) MISO Wireless Communication Systems via Intelligent Reflecting Surfaces: (Invited Paper). In: 2019 IEEE/CIC International Conference on Communications in China (ICCC). IEEE

  129. Chen W, Ma X, Li Z, Kuang N. Sum-rate Maximization for Intelligent Reflecting Surface Based Terahertz Communication Systems. In: 2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops). IEEE (2019)

  130. Guo H, Liang YC, Chen J, Larsson EG (2020) Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks. IEEE Trans Wireless Commun 19(5):3064–3076. https://doi.org/10.1109/twc.2020.2970061

    Article  Google Scholar 

  131. Mu X, Liu Y, Guo L, Lin J, Al-Dhahir N (2020) Exploiting Intelligent Reflecting Surfaces in NOMA Networks: Joint Beamforming Optimization. IEEE Trans Wireless Commun 19(10):6884–6898. https://doi.org/10.1109/twc.2020.3006915

    Article  Google Scholar 

  132. Guo H, Liang YC, Chen J, Larsson EG (2019) Weighted Sum-Rate Maximization for Intelligent Reflecting Surface Enhanced Wireless Networks. In: 2019 IEEE Global Communications Conference (GLOBECOM). IEEE

  133. Yu X, Xu D, Schober R (2020) Optimal Beamforming for MISO Communications via Intelligent Reflecting Surfaces. In: 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE

  134. Perovic NS, Tran LN, Di Renzo M, Flanagan MF (2021) Achievable Rate Optimization for MIMO Systems With Reconfigurable Intelligent Surfaces. IEEE Trans Wireless Commun 20(6):3865–3882. https://doi.org/10.1109/twc.2021.3054121

    Article  Google Scholar 

  135. Yang Y, Zheng B, Zhang S, Zhang R (2020) Intelligent Reflecting Surface Meets OFDM: Protocol Design and Rate Maximization. IEEE Trans Commun 68(7):4522–4535. https://doi.org/10.1109/tcomm.2020.2981458

    Article  Google Scholar 

  136. Björnson E. Optimizing a Binary Intelligent Reflecting Surface for OFDM Communications under Mutual Coupling. arXiv

  137. Yang Y, Zhang S, Zhang R (2020) IRS-Enhanced OFDMA: Joint Resource Allocation and Passive Beamforming Optimization. IEEE Wireless Communications Letters. 9(6):760–764. https://doi.org/10.1109/lwc.2020.2968303

    Article  MathSciNet  Google Scholar 

  138. Yang Y, Zhang S, Zhang R (2019) IRS-Enhanced OFDM: Power Allocation and Passive Array Optimization. In: 2019 IEEE Global Communications Conference (GLOBECOM). IEEE

  139. Nuti P, Balti E, Evans BL (2022) Spectral Efficiency optimization for mmWave Wideband MIMO RIS-assisted Communication. In: 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). IEEE

  140. Zhang J, Tang J, Feng W, Zhang XY, So DKC, Wong KK et al (2024) Throughput Maximization for RIS-Assisted UAV-Enabled WPCN. IEEE Access. 12:13418–13430. https://doi.org/10.1109/access.2024.3352085

    Article  Google Scholar 

  141. Wang J, Yu H (2024) Energy Balance-Oriented RF Energy Harvesting Schemes for Intelligent Reflecting Surface-Assisted Cognitive Radio Sensor Networks. IEEE Sensors Journal. p. 1–1. https://doi.org/10.1109/jsen.2024.3354734

  142. Hameed I, Koo I (2024) Max-Min Throughput Optimization in WPCNs: A Hybrid Active/Passive IRS-Assisted Scheme. IEEE Open Journal of the Communications Society. 5:1123–1140. https://doi.org/10.1109/ojcoms.2024.3360288

    Article  Google Scholar 

  143. Liu L, Li S, Wei M, Xu J, Yu B (2024) Joint Beam-Forming Optimization for Active-RIS-Assisted Internet-of-Things Networks with SWIPT. Future Internet. 16(1):20. https://doi.org/10.3390/fi16010020

    Article  Google Scholar 

  144. Qiu C, Wu Q, Hua M, Guan X, Wu Y (2023) Achieving Multi-Beam Gain in Intelligent Reflecting Surface Assisted Wireless Energy Transfer. IEEE Trans Veh Technol 72(3):4052–4057. https://doi.org/10.1109/tvt.2022.3215627

    Article  Google Scholar 

  145. Sm S, Luo S, Che YL, Wu K, Leung VCM (2023) Energy-Efficient Intelligent Reflecting Surface Aided Wireless-Powered IIoT Networks. IEEE Syst J 17(2):2534–2545. https://doi.org/10.1109/jsyst.2022.3186964

    Article  Google Scholar 

  146. Mao S, Yang K, Hu J, Li D, Lan D, Xiao M et al (2023) Intelligent Reflecting Surface-Aided Wireless Powered Hybrid Backscatter-Active Communication Networks. IEEE Trans Veh Technol 72(1):1383–1388. https://doi.org/10.1109/tvt.2022.3205950

    Article  Google Scholar 

  147. Mao S, Zhang N, Hu J, Yang K (2023) Intelligent Reflecting Surface-Assisted Over-the-Air Computation for Backscatter Sensor Networks. IEEE Trans Veh Technol 72(5):6839–6843. https://doi.org/10.1109/tvt.2022.3232734

    Article  Google Scholar 

  148. Hameed I, Camana MR, Tuan PV, Koo I (2023) Intelligent Reflecting Surfaces for Sum-Rate Maximization in Cognitive Radio Enabled Wireless Powered Communication Network. IEEE Access. 11:16021–16031. https://doi.org/10.1109/access.2023.3243848

    Article  Google Scholar 

  149. Zhu Z, Li Z, Chu Z, Wu Q, Liang J, Xiao Y, et al (2023) Intelligent Reflecting Surface-Assisted Wireless Powered Heterogeneous Networks. IEEE Transactions on Wireless Communications. p. 1–1. https://doi.org/10.1109/twc.2023.3274220

  150. Peng H, Wang LC (2023) Energy Harvesting Reconfigurable Intelligent Surface for UAV Based on Robust Deep Reinforcement Learning. IEEE Trans Wireless Commun 22(10):6826–6838. https://doi.org/10.1109/twc.2023.3245820

    Article  Google Scholar 

  151. Liao BLJ, Wu W, Li Y (2023) Intelligent Reflecting Surface Assisted Secure Computation of Wireless Powered MEC System. IEEE Transactions on Mobile Computing. p. 1–12. https://doi.org/10.1109/tmc.2023.3269791

  152. Gao Y, Wu Q, Chen W, Wu C, Ng DWK, Al-Dhahir N (2024) Exploiting Intelligent Reflecting Surfaces for Interference Channels with SWIPT. IEEE Transactions on Wireless Communications. p. 1–1. https://doi.org/10.1109/twc.2023.3318795

  153. Lin S, Chen F, Wen M, Feng Y, Renzo MD (2022) Reconfigurable Intelligent Surface-Aided Quadrature Reflection Modulation for Simultaneous Passive Beamforming and Information Transfer. IEEE Trans Wireless Commun 21(3):1469–1481. https://doi.org/10.1109/twc.2021.3104059

    Article  Google Scholar 

  154. Zhu Z, Li Z, Chu Z, Sun G, Hao W, Liu P et al (2022) Resource Allocation for Intelligent Reflecting Surface Assisted Wireless Powered IoT Systems With Power Splitting. IEEE Trans Wireless Commun 21(5):2987–2998. https://doi.org/10.1109/twc.2021.3117346

    Article  Google Scholar 

  155. Xu S, Du Y, Liu J, Li J (2022) Intelligent Reflecting Surface Based Backscatter Communication for Data Offloading. IEEE Trans Commun 70(6):4211–4221. https://doi.org/10.1109/tcomm.2022.3170629

    Article  Google Scholar 

  156. Qiao T, Caot Y, Tang J, Zhao N, Wong KK (2022) Uplink Secure Communication via Intelligent Reflecting Surface and Energy-Harvesting Jammer. In: GLOBECOM 2022 - 2022 IEEE Global Communications Conference. IEEE

  157. Feng Z, Clerckx B, Zhao Y (2022) Waveform and Beamforming Design for Intelligent Reflecting Surface Aided Wireless Power Transfer: Single-User and Multi-User Solutions. IEEE Trans Wireless Commun 21(7):5346–5361. https://doi.org/10.1109/twc.2021.3139440

    Article  Google Scholar 

  158. Wang J, Yu H (2022) RF energy harvesting schemes for intelligent reflecting surface-aided cognitive radio sensor networks. Scientific Reports. 12(1). https://doi.org/10.1038/s41598-022-26853-0

  159. Hua M, Wu Q (2022) Joint Dynamic Passive Beamforming and Resource Allocation for IRS-Aided Full-Duplex WPCN. IEEE Trans Wireless Commun 21(7):4829–4843. https://doi.org/10.1109/twc.2021.3133491

    Article  Google Scholar 

  160. Liu Y, Han F, Zhao S (2022) Flexible and Reliable Multiuser SWIPT IoT Network Enhanced by UAV-Mounted Intelligent Reflecting Surface. IEEE Trans Reliab 71(2):1092–1103. https://doi.org/10.1109/tr.2022.3161336

    Article  Google Scholar 

  161. Tuan PV, Son PN (2022) Intelligent reflecting surface assisted transceiver design optimization in non-linear SWIPT network with heterogeneous users. Wireless Netw 28(5):1889–1908. https://doi.org/10.1007/s11276-022-02938-6

    Article  Google Scholar 

  162. Hua M, Wu Q, Poor HV (2022) Power-Efficient Passive Beamforming and Resource Allocation for IRS-Aided WPCNs. IEEE Trans Commun 70(5):3250–3265. https://doi.org/10.1109/tcomm.2022.3161688

    Article  Google Scholar 

  163. Li Z, Chen W, Wu Q, Wang K, Li J (2022) Joint Beamforming Design and Power Splitting Optimization in IRS-Assisted SWIPT NOMA Networks. IEEE Trans Wireless Commun 21(3):2019–2033. https://doi.org/10.1109/twc.2021.3108901

    Article  Google Scholar 

  164. Li Z, Chen W, Wu Q, Cao H, Wang K, Li J (2022) Robust Beamforming Design and Time Allocation for IRS-Assisted Wireless Powered Communication Networks. IEEE Transactions on Communications. 70(4):2838–2852. https://doi.org/10.1109/tcomm.2022.3152576

  165. Wu Q, Zhou X, Chen W, Li J, Zhang X (2022) IRS-Aided WPCNs: A New Optimization Framework for Dynamic IRS Beamforming. IEEE Trans Wireless Commun 21(7):4725–4739. https://doi.org/10.1109/twc.2021.3132666

    Article  Google Scholar 

  166. Kang J, Kim S (2022) Deep Reinforcement Learning based Secure Wireless Communication with Self-powered Intelligent Reflecting Surface. https://doi.org/10.22541/au.165873784.43044471/v1

  167. Li Z, Chen W, Cao H, Tang H, Wang K, Li J (2022) Joint Communication and Trajectory Design for Intelligent Reflecting Surface Empowered UAV SWIPT Networks. IEEE Trans Veh Technol 71(12):12840–12855. https://doi.org/10.1109/tvt.2022.3196039

    Article  Google Scholar 

  168. Mohamed A, Zappone A, Renzo MD (2022) Bi-Objective Optimization of Information Rate and Harvested Power in RIS-Aided SWIPT Systems. IEEE Wireless Communications Letters. 11(10):2195–2199. https://doi.org/10.1109/lwc.2022.3196906

    Article  Google Scholar 

  169. Qiao T, Cao Y, Tang J, Zhao N, Wong KK (2022) IRS-Aided Uplink Security Enhancement via Energy-Harvesting Jammer. IEEE Trans Commun 70(12):8286–8297. https://doi.org/10.1109/tcomm.2022.3220686

    Article  Google Scholar 

  170. Zeng P, Wu Q, Qiao D (2021) Energy Minimization for IRS-Aided WPCNs With Non-Linear Energy Harvesting Model. IEEE Wireless Communications Letters. 10(11):2592–2596. https://doi.org/10.1109/lwc.2021.3109642

    Article  Google Scholar 

  171. Xu Y, Gao Z, Wang Z, Huang C, Yang Z, Yuen C (2021) RIS-Enhanced WPCNs: Joint Radio Resource Allocation and Passive Beamforming Optimization. IEEE Trans Veh Technol 70(8):7980–7991. https://doi.org/10.1109/tvt.2021.3096603

    Article  Google Scholar 

  172. Gunasinghe D, Baduge GAA (2021) Performance Analysis of SWIPT for Intelligent Reflective Surfaces for Wireless Communication. IEEE Commun Lett 25(7):2201–2205. https://doi.org/10.1109/lcomm.2021.3073093

    Article  Google Scholar 

  173. Chu Z, Zhu Z, Zhou F, Zhang M, Al-Dhahir N (2021) Intelligent Reflecting Surface Assisted Wireless Powered Sensor Networks for Internet of Things. IEEE Trans Commun 69(7):4877–4889. https://doi.org/10.1109/tcomm.2021.3074539

    Article  Google Scholar 

  174. Chu Z, Xiao P, Mi D, Hao W, Khalily M, Yang LL (2021) A Novel Transmission Policy for Intelligent Reflecting Surface Assisted Wireless Powered Sensor Networks. IEEE Journal of Selected Topics in Signal Processing. 15(5):1143–1158. https://doi.org/10.1109/jstsp.2021.3089423

    Article  Google Scholar 

  175. Hadzi-Velkov Z, Pejoski S, Zlatanov N, Gacanin H (2021) Designing Wireless Powered Networks Assisted by Intelligent Reflecting Surfaces With Mechanical Tilt. IEEE Commun Lett 25(10):3355–3359. https://doi.org/10.1109/lcomm.2021.3098128

    Article  Google Scholar 

  176. Dai H, Huang W, Zhang H, Luo J, Li C, Wang B (2021) Achievable Harvested Energy Region of IRS-Assisted Wireless Power Transfer System. In: 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE

  177. Lyu B, Ramezani P, Hoang DT, Gong S, Yang Z, Jamalipour A (2021) Optimized Energy and Information Relaying in Self-Sustainable IRS-Empowered WPCN. IEEE Trans Commun 69(1):619–633. https://doi.org/10.1109/tcomm.2020.3028875

    Article  Google Scholar 

  178. Khalili A, Zargari S, Wu Q, Ng DWK, Zhang R (2021) Multi-Objective Resource Allocation for IRS-Aided SWIPT. IEEE Wireless Communications Letters. 10(6):1324–1328. https://doi.org/10.1109/lwc.2021.3065844

    Article  Google Scholar 

  179. Wu Q, Zhou X, Schober R (2021) IRS-Assisted Wireless Powered NOMA: Do We Really Need Different Phase Shifts in DL and UL? IEEE Wireless Communications Letters. 10(7):1493–1497. https://doi.org/10.1109/lwc.2021.3072502

    Article  Google Scholar 

  180. Song D, Shin W, Lee J (2021) A Maximum Throughput Design for Wireless Powered Communication Networks With IRS-NOMA. IEEE Wireless Communications Letters. 10(4):849–853. https://doi.org/10.1109/lwc.2020.3046722

    Article  Google Scholar 

  181. Yan W, Yuan X, He ZQ, Kuai X (2020) Large Intelligent Surface Aided Multiuser MIMO: Passive Beamforming and Information Transfer. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC). IEEE

  182. Yan W, Yuan X, He ZQ, Kuai X (2020) Passive Beamforming and Information Transfer Design for Reconfigurable Intelligent Surfaces Aided Multiuser MIMO Systems. IEEE J Sel Areas Commun 38(8):1793–1808. https://doi.org/10.1109/jsac.2020.3000811

    Article  Google Scholar 

  183. Lyu B, Hoang DT, Gong S, Yang Z (2020) Intelligent Reflecting Surface Assisted Wireless Powered Communication Networks. In: 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). IEEE

  184. Zheng Y, Bi S, Zhang YJA, Wang H (2020) Throughput Optimization of Intelligent Reflecting Surface Assisted User Cooperation in WPCNs. In: 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). IEEE

  185. Saeidi MA, Emadi MJ (2020) IRS-based Secrecy Rate Analysis in Presence of an Energy Harvesting Eavesdropper. In: 2020 Iran Workshop on Communication and Information Theory (IWCIT). IEEE

  186. Tse D, Viswanath P (2005) Fundamentals of wireless communication. Cambridge university press

  187. Grant M, Boyd S, Ye Y (2008) CVX: Matlab software for disciplined convex programming

  188. So AMC, Zhang J, Ye Y (2006) On approximating complex quadratic optimization problems via semidefinite programming relaxations. Math Program 110(1):93–110. https://doi.org/10.1007/s10107-006-0064-6

    Article  MathSciNet  Google Scholar 

  189. Xie X, He C, Le M, Han Z, Wang ZJ (2023) Robust Joint Beamforming Optimization for RISs-Empowered Cell-Free Networks. IEEE Transactions on Vehicular Technology. p. 1–16. https://doi.org/10.1109/tvt.2023.3286209

  190. Ueng FB, Wang HF, Shen HW (2024) Re-configurable Intelligent Surfaces Assisted Simultaneous Wireless Information and Power Transfer. Wireless Pers Commun. https://doi.org/10.1007/s11277-023-10837-y

    Article  Google Scholar 

  191. Gao Y, Wu Q, Chen W, Liu Y, Li M, Da Costa DB (2024) IRS-Aided Overloaded Multi-Antenna Systems: Joint User Grouping and Resource Allocation. IEEE Transactions on Wireless Communications. p. 1–1. https://doi.org/10.1109/twc.2023.3348292

  192. Luo C, Hu J, Xiang L, Yang K, Wong KK (2024) Massive Wireless Energy Transfer without Channel State Information via Imperfect Intelligent Reflecting Surfaces. IEEE Transactions on Vehicular Technology. p. 1–13. https://doi.org/10.1109/tvt.2024.3361210

  193. Zhu X, Liu Z, Shi Y, Di H, Meng Z, Tu X (2024) Transmission Design for Intelligent Reflecting Surface-Aided MIMO SWIPT Systems With Finite-Alphabet Inputs. IEEE Transactions on Communications. p. 1–1. https://doi.org/10.1109/tcomm.2024.3356445

  194. Zhou Y, Deng F, Li S (2024) Jointly Active/Passive Beamforming Optimization for Intelligent-Reflecting Surface-Assisted Cognitive-IoT Networks. Electronics 13(2):299. https://doi.org/10.3390/electronics13020299

    Article  Google Scholar 

  195. Ma H, Zhang H, Zhu Y, Qian Y (2023) Wireless Powered Intelligent Reflecting Surface for Improving Broadcasting Channels. IEEE Trans Wireless Commun 22(4):2760–2774. https://doi.org/10.1109/twc.2022.3213614

    Article  Google Scholar 

  196. Yue Q, Hu J, Yang K, Yu Q (2023) Joint Transceiving and Reflecting Design for Intelligent Reflecting Surface Aided Wireless Power Transfer. IEEE Transactions on Wireless Communications. p. 1–1. https://doi.org/10.1109/twc.2023.3251743

  197. Gao Y, Wu Q, Zhang G, Chen W, Ng DWK, Renzo MD (2023) Beamforming Optimization for Active Intelligent Reflecting Surface-Aided SWIPT. IEEE Trans Wireless Commun 22(1):362–378. https://doi.org/10.1109/twc.2022.3193845

    Article  Google Scholar 

  198. Yue Q, Hu J, Yang K, Wong KK (2023) Robust Integrated Data and Energy Transfer Aided by Intelligent Reflecting Surfaces: Successive Target Migration Optimization Towards Energy Sustainability. IEEE Transactions on Green Communications and Networking. p. 1–1. https://doi.org/10.1109/tgcn.2023.3281657

  199. Liu Z, Zhang W, Cao Q, Liang Y, Huang W, He S (2023) Joint Beamforming and Deployment Design for IRS-aided Energy Harvest IoT Network. In: 2023 3rd International Conference on Neural Networks, Information and Communication Engineering (NNICE). IEEE

  200. Zhang C, Huang Y, He C, Pan C, Wang K (2023) Energy Optimization for IRS-Aided SWIPT Under Imperfect Cascaded Channels. IEEE Trans Veh Technol 72(9):11631–11643. https://doi.org/10.1109/tvt.2023.3265963

    Article  Google Scholar 

  201. Zou Y, Long Y, Gong S, Hoang DT, Liu W, Cheng W et al (2022) Robust Beamforming Optimization for Self-Sustainable Intelligent Reflecting Surface Assisted Wireless Networks. IEEE Transactions on Cognitive Communications and Networking. 8(2):856–870. https://doi.org/10.1109/tccn.2021.3133839

    Article  Google Scholar 

  202. Ma H, Zhang H, Zhang N, Wang J, Wang N, Leung VCM (2022) Reconfigurable Intelligent Surface With Energy Harvesting Assisted Cooperative Ambient Backscatter Communications. IEEE Wireless Communications Letters. 11(6):1283–1287. https://doi.org/10.1109/lwc.2022.3164257

    Article  Google Scholar 

  203. Yue Q, Hu J, Yang K, Wong KK (2022) Intelligent Reflecting Surface Aided Wireless Power Transfer With a DC-Combining Based Energy Receiver and Practical Waveforms. IEEE Trans Veh Technol 71(9):9751–9764. https://doi.org/10.1109/tvt.2022.3182379

    Article  Google Scholar 

  204. Zhang J, Li J, Zhang Y, Wu Q, Wu X, Shu F et al (2022) Collaborative Intelligent Reflecting Surface Networks With Multi-Agent Reinforcement Learning. IEEE Journal of Selected Topics in Signal Processing. 16(3):532–545. https://doi.org/10.1109/jstsp.2022.3162109

    Article  Google Scholar 

  205. Liang W, Luo W, Zhang J, Ding Z (2022) Active and Passive Beamforming Design for Reconfigurable Intelligent Surface Assisted CR-NOMA Networks. IEEE Commun Lett 26(10):2409–2414. https://doi.org/10.1109/lcomm.2022.3194116

    Article  Google Scholar 

  206. Liong HJ, Chiong CWR, Gopal L, Juwono FH (2022) Sum-Rate Maximization for Intelligent Reflecting Surface Assisted MIMO SWIPT Systems. In: 2022 IEEE Symposium on Future Telecommunication Technologies (SOFTT). IEEE

  207. Zhu Z, Xu J, Sun G, Hao W, Chu Z, Pan C et al (2022) Robust Beamforming Design for IRS-Aided Secure SWIPT Terahertz Systems With Non-Linear EH Model. IEEE Wireless Communications Letters. 11(4):746–750. https://doi.org/10.1109/lwc.2022.3142098

    Article  Google Scholar 

  208. Ashraf M, Riihonen T (2022) Reflecting Surface Assisted Energy Harvesting with Optimized NOMA Downlink Transmissions. In: 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC). IEEE

  209. Pang H, Cui M, Zhang G, Wu Q (2022) Joint beamforming design and resource allocation for double-IRS-assisted RSMA SWIPT systems. Comput Commun 196:229–238. https://doi.org/10.1016/j.comcom.2022.10.004

    Article  Google Scholar 

  210. Zargari S, Farahmand S, Abolhassani B, Tellambura C (2021) Robust Active and Passive Beamformer Design for IRS-Aided Downlink MISO PS-SWIPT With a Nonlinear Energy Harvesting Model. IEEE Transactions on Green Communications and Networking. 5(4):2027–2041. https://doi.org/10.1109/tgcn.2021.3093825

    Article  Google Scholar 

  211. Yu K, Yu X, Cai J (2021) UAVs Assisted Intelligent Reflecting Surfaces SWIPT System With Statistical CSI. IEEE Journal of Selected Topics in Signal Processing. 15(5):1095–1109. https://doi.org/10.1109/jstsp.2021.3096025

    Article  MathSciNet  Google Scholar 

  212. Lin S, Zheng B, Alexandropoulos GC, Wen M, Renzo MD, Chen F (2021) Reconfigurable Intelligent Surfaces With Reflection Pattern Modulation: Beamforming Design and Performance Analysis. IEEE Trans Wireless Commun 20(2):741–754. https://doi.org/10.1109/twc.2020.3028198

    Article  Google Scholar 

  213. Deng Z, Pan Y (2021) Optimal Beamforming for IRS-Assisted SWIPT System with an Energy-Harvesting Eavesdropper. Electronics 10(20):2536. https://doi.org/10.3390/electronics10202536

    Article  Google Scholar 

  214. Zargari S, Khalili A, Wu Q, Mili MR, Ng DWK (2021) Max-Min Fair Energy-Efficient Beamforming Design for Intelligent Reflecting Surface-Aided SWIPT Systems With Non-Linear Energy Harvesting Model. IEEE Trans Veh Technol 70(6):5848–5864. https://doi.org/10.1109/tvt.2021.3077477

    Article  Google Scholar 

  215. Zheng Y, Bi S, Zhang YJA, Lin X, Wang H (2021) Joint Beamforming and Power Control for Throughput Maximization in IRS-Assisted MISO WPCNs. IEEE Internet Things J 8(10):8399–8410. https://doi.org/10.1109/jiot.2020.3045703

    Article  Google Scholar 

  216. Wu Q, Guan X, Zhang R (2022) Intelligent Reflecting Surface-Aided Wireless Energy and Information Transmission: An Overview. Proc IEEE 110(1):150–170. https://doi.org/10.1109/jproc.2021.3121790

    Article  Google Scholar 

  217. Shi W, Zhou X, Jia L, Wu Y, Shu F, Wang J (2021) Enhanced Secure Wireless Information and Power Transfer via Intelligent Reflecting Surface. IEEE Commun Lett 25(4):1084–1088. https://doi.org/10.1109/lcomm.2020.3043475

    Article  Google Scholar 

  218. Zargari S, Khalili A, Zhang R (2021) Energy Efficiency Maximization via Joint Active and Passive Beamforming Design for Multiuser MISO IRS-Aided SWIPT. IEEE Wireless Communications Letters. 10(3):557–561. https://doi.org/10.1109/lwc.2020.3037750

    Article  Google Scholar 

  219. Gong S, Yang Z, Xing C, An J, Hanzo L (2021) Beamforming Optimization for Intelligent Reflecting Surface-Aided SWIPT IoT Networks Relying on Discrete Phase Shifts. IEEE Internet Things J 8(10):8585–8602. https://doi.org/10.1109/jiot.2020.3046929

    Article  Google Scholar 

  220. Ramezani P, Jamalipour A (2021) Backscatter-Assisted Wireless Powered Communication Networks Empowered by Intelligent Reflecting Surface. IEEE Trans Veh Technol 70(11):11908–11922. https://doi.org/10.1109/tvt.2021.3116708

    Article  Google Scholar 

  221. He C, Xie X, Yang K, Wang ZJ. A Joint Power Splitting, Active and Passive Beamforming Optimization Framework for IRS Assisted MIMO SWIPT System. arXiv

  222. Meng W, He X, Li Y, Wu H, Yin C (2021) Wireless Power Transfer via Intelligent Reflecting Surface-Assisted Millimeter Wave Power Beacons. In: 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). IEEE

  223. Hu S, Wei Z, Cai Y, Liu C, Ng DWK, Yuan J (2021) Robust and Secure Sum-Rate Maximization for Multiuser MISO Downlink Systems With Self-Sustainable IRS. IEEE Trans Commun 69(10):7032–7049. https://doi.org/10.1109/tcomm.2021.3097140

    Article  Google Scholar 

  224. Zou Y, Gong S, Xu J, Cheng W, Hoang DT, Niyato D (2020) Wireless Powered Intelligent Reflecting Surfaces for Enhancing Wireless Communications. IEEE Trans Veh Technol 69(10):12369–12373. https://doi.org/10.1109/tvt.2020.3011942

    Article  Google Scholar 

  225. Wu Q, Zhang R (2020) Weighted Sum Power Maximization for Intelligent Reflecting Surface Aided SWIPT. IEEE Wireless Communications Letters. 9(5):586–590. https://doi.org/10.1109/lwc.2019.2961656

    Article  Google Scholar 

  226. Sun W, Song Q, Guo L, Zhao J (2020) Secrecy Rate Maximization for Intelligent Reflecting Surface Aided SWIPT Systems. In: 2020 IEEE/CIC International Conference on Communications in China (ICCC). IEEE

  227. Zou Y, Gong S, Xu J, Cheng W, Hoang DT, Niyato D (2020) Joint Energy Beamforming and Optimization for Intelligent Reflecting Surface Enhanced Communications. In: 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). IEEE

  228. Pan C, Ren H, Wang K, Elkashlan M, Nallanathan A, Wang J et al (2020) Intelligent Reflecting Surface Aided MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer. IEEE J Sel Areas Commun 38(8):1719–1734. https://doi.org/10.1109/jsac.2020.3000802

    Article  Google Scholar 

  229. Xiu Y, Wu J, Gui G, Wei N, Zhang Z (2020) Artificial Noise-Aided Secure SWIPT Communication Systems Using Intelligent Reflecting Surface. In: 2020 IEEE/CIC International Conference on Communications in China (ICCC). IEEE

  230. Hu S, Wei Z, Cai Y, Ng DWK, Yuan J (2020) Sum-Rate Maximization for Multiuser MISO Downlink Systems with Self-sustainable IRS. In: GLOBECOM 2020 - 2020 IEEE Global Communications Conference. IEEE

  231. Liu J, Xiong K, Lu Y, Ng DWK, Zhong Z, Han Z (2020) Energy Efficiency in Secure IRS-Aided SWIPT. IEEE Wireless Communications Letters. 9(11):1884–1888. https://doi.org/10.1109/lwc.2020.3006837

    Article  Google Scholar 

  232. Tang Y, Ma G, Xie H, Xu J, Han X (2020) Joint Transmit and Reflective Beamforming Design for IRS-Assisted Multiuser MISO SWIPT Systems. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC). IEEE

  233. Javed MA, Nguyen TN, Mirza J, Ahmed J, Ali B (2022) Reliable Communications for Cybertwin-Driven 6G IoVs Using Intelligent Reflecting Surfaces. IEEE Trans Industr Inf 18(11):7454–7462. https://doi.org/10.1109/tii.2022.3151773

    Article  Google Scholar 

  234. Subrt L, Pechac P (2012) Controlling propagation environments using Intelligent Walls. In: 2012 6th European Conference on Antennas and Propagation (EUCAP). IEEE

  235. Zappone A, Renzo MD, Debbah M (2019) Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both? IEEE Trans Commun 67(10):7331–7376. https://doi.org/10.1109/tcomm.2019.2924010

    Article  Google Scholar 

  236. Subrt L, Pechac P (2012) Intelligent walls as autonomous parts of smart indoor environments. IET Commun 6(8):1004. https://doi.org/10.1049/iet-com.2010.0544

    Article  Google Scholar 

  237. Zhou G, Pan C, Ren H, Wang K, Nallanathan A (2020) Intelligent Reflecting Surface Aided Multigroup Multicast MISO Communication Systems. IEEE Trans Signal Process 68:3236–3251. https://doi.org/10.1109/tsp.2020.2990098

    Article  MathSciNet  Google Scholar 

  238. Oggier F, Hassibi B (2011) The Secrecy Capacity of the MIMO Wiretap Channel. IEEE Trans Inf Theory 57(8):4961–4972. https://doi.org/10.1109/tit.2011.2158487

    Article  MathSciNet  Google Scholar 

  239. Feng K, Li X, Han Y, Jin S, Chen Y (2021) Physical Layer Security Enhancement Exploiting Intelligent Reflecting Surface. IEEE Commun Lett 25(3):734–738. https://doi.org/10.1109/lcomm.2020.3042344

    Article  Google Scholar 

  240. Cui M, Zhang G, Zhang R (2019) Secure Wireless Communication via Intelligent Reflecting Surface. IEEE Wireless Communications Letters. 8(5):1410–1414. https://doi.org/10.1109/lwc.2019.2919685

    Article  Google Scholar 

  241. Liaskos C, Nie S, Tsioliaridou A, Pitsillides A, Ioannidis S, Akyildiz I (2019) A novel communication paradigm for high capacity and security via programmable indoor wireless environments in next generation wireless systems. Ad Hoc Netw 87:1–16. https://doi.org/10.1016/j.adhoc.2018.11.001

    Article  Google Scholar 

  242. Wang Q, Zhou F, Hu RQ, Qian Y (2020) Energy-Efficient Beamforming and Cooperative Jamming in IRS-Assisted MISO Networks. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC). IEEE

  243. Yu X, Xu D, Schober R (2019) Enabling Secure Wireless Communications via Intelligent Reflecting Surfaces. In: 2019 IEEE Global Communications Conference (GLOBECOM). IEEE

  244. Clerckx B, Huang K, Varshney L, Ulukus S, Alouini M (2021) Wireless Power Transfer for Future Networks: Signal Processing, Machine Learning, Computing, and Sensing. IEEE Journal of Selected Topics in Signal Processing. 15(5):1060–1094. https://doi.org/10.1109/jstsp.2021.3098478

    Article  Google Scholar 

  245. Bjornson E, Sanguinetti L (2019) Demystifying the Power Scaling Law of Intelligent Reflecting Surfaces and Metasurfaces. In: 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE

  246. Mishra D, Johansson H (2019) Channel Estimation and Low-complexity Beamforming Design for Passive Intelligent Surface Assisted MISO Wireless Energy Transfer. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE

  247. Sur SN, Kandar D, Imoize AL, Bera R (2022) In: An Overview of Intelligent Reflecting Surface Assisted UAV Communication Systems. Springer International Publishing; p. 67–94

  248. Li S, Duo B, Yuan X, Liang YC, Renzo MD (2020) Reconfigurable Intelligent Surface Assisted UAV Communication: Joint Trajectory Design and Passive Beamforming. IEEE Wireless Communications Letters. 9(5):716–720. https://doi.org/10.1109/lwc.2020.2966705

    Article  Google Scholar 

  249. Zhang Q, Saad W, Bennis M (2019) Reflections in the Sky: Millimeter Wave Communication with UAV-Carried Intelligent Reflectors. In: 2019 IEEE Global Communications Conference (GLOBECOM). IEEE

  250. Hashida H, Kawamoto Y, Kato N (2020) Intelligent Reflecting Surface Placement Optimization in Air-Ground Communication Networks Toward 6G. IEEE Wirel Commun 27(6):146–151. https://doi.org/10.1109/mwc.001.2000142

    Article  Google Scholar 

  251. Ma D, Ding M, Hassan M (2020) Enhancing Cellular Communications for UAVs via Intelligent Reflective Surface. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE

  252. Al-Jarrah M, Alsusa E, Al-Dweik A, So DKC (2021) Capacity Analysis of IRS-Based UAV Communications With Imperfect Phase Compensation. IEEE Wireless Communications Letters. 10(7):1479–1483. https://doi.org/10.1109/lwc.2021.3071059

    Article  Google Scholar 

  253. Sur SN, Singh AK, Kandar D, Imoize AL (2023) Aerial IRS-assisted Wireless Communication Systems. In: 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE

  254. Wang L, Wang K, Pan C, Aslam N (2022) Joint Trajectory and Passive Beamforming Design for Intelligent Reflecting Surface-Aided UAV Communications: A Deep Reinforcement Learning Approach. IEEE Transactions on Mobile Computing.p. 1–11. https://doi.org/10.1109/tmc.2022.3200998

  255. Mohsan SAH, Khan MA, Alsharif MH, Uthansakul P, Solyman AAA (2022) Intelligent Reflecting Surfaces Assisted UAV Communications for Massive Networks: Current Trends, Challenges, and Research Directions. Sensors. 22(14):5278. https://doi.org/10.3390/s22145278

    Article  Google Scholar 

  256. Kisseleff S, Chatzinotas S, Ottersten B (2021) Reconfigurable Intelligent Surfaces in Challenging Environments: Underwater, Underground. Industrial and Disaster. IEEE Access. 9:150214–150233. https://doi.org/10.1109/access.2021.3125461

    Article  Google Scholar 

  257. Mohsan SAH, Mazinani A, Othman NQH, Amjad H (2022) Towards the internet of underwater things: a comprehensive survey. Earth Sci Inf 15(2):735–764. https://doi.org/10.1007/s12145-021-00762-8

    Article  Google Scholar 

  258. Gurugopinath S, Al-Hammadi Y, Sofotasios PC, Muhaidat S, Dobre OA (2020) Non-Orthogonal Multiple Access with Wireless Caching for 5G-Enabled Vehicular Networks. IEEE Network 34(5):127–133. https://doi.org/10.1109/mnet.011.1900564

    Article  Google Scholar 

  259. Wang J, Zhang W, Bao X, Song T, Pan C (2020) Outage Analysis for Intelligent Reflecting Surface Assisted Vehicular Communication Networks. In: GLOBECOM 2020 - 2020 IEEE Global Communications Conference. IEEE

  260. Masini BM, Silva CM, Balador A (2020) The Use of Meta-Surfaces in Vehicular Networks. J Sens Actuator Netw 9(1):15. https://doi.org/10.3390/jsan9010015

    Article  Google Scholar 

  261. Al-Hilo A, Samir M, Elhattab M, Assi C, Sharafeddine S (2022) Reconfigurable Intelligent Surface Enabled Vehicular Communication: Joint User Scheduling and Passive Beamforming. IEEE Trans Veh Technol 71(3):2333–2345. https://doi.org/10.1109/tvt.2022.3141935

    Article  Google Scholar 

  262. Noor-A-Rahim M, Liu Z, Lee H, Khyam MO, He J, Pesch D et al (2022) 6G for Vehicle-to-Everything (V2X) Communications: Enabling Technologies, Challenges, and Opportunities. Proc IEEE 110(6):712–734. https://doi.org/10.1109/jproc.2022.3173031

    Article  Google Scholar 

  263. Chen Y, Wang Y, Zhang J, Li Z (2020) Resource Allocation for Intelligent Reflecting Surface Aided Vehicular Communications. IEEE Trans Veh Technol 69(10):12321–12326. https://doi.org/10.1109/tvt.2020.3010252

    Article  Google Scholar 

  264. Ai Y, deFigueiredo FAP, Kong L, Cheffena M, Chatzinotas S, Ottersten B (2021) Secure Vehicular Communications Through Reconfigurable Intelligent Surfaces. IEEE Trans Veh Technol 70(7):7272–7276. https://doi.org/10.1109/tvt.2021.3088441

    Article  Google Scholar 

  265. Makarfi AU, Rabie KM, Kaiwartya O, Li X, Kharel R (2020) Physical Layer Security in Vehicular Networks with Reconfigurable Intelligent Surfaces. In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). IEEE

  266. Makarfi AU, Rabie KM, Kaiwartya O, Adhikari K, Li X, Quiroz-Castellanos M, et al. Reconfigurable Intelligent Surfaces-Enabled Vehicular Networks: A Physical Layer Security Perspective. arXiv

  267. Mensi N, Rawat DB, Balti E (2021) Physical Layer Security for V2I Communications: Reflecting Surfaces Vs. Relaying. In: 2021 IEEE Global Communications Conference (GLOBECOM). IEEE

  268. Dampahalage D, Manosha KBS, Rajatheva N, Latva-aho M (2020) Intelligent Reflecting Surface Aided Vehicular Communications. In: 2020 IEEE Globecom Workshops (GC Wkshps. IEEE

  269. Pan C, Ren H, Wang K, Xu W, Elkashlan M, Nallanathan A et al (2020) Multicell MIMO Communications Relying on Intelligent Reflecting Surfaces. IEEE Trans Wireless Commun 19(8):5218–5233. https://doi.org/10.1109/twc.2020.2990766

    Article  Google Scholar 

  270. Ding Z, Poor HV (2020) A Simple Design of IRS-NOMA Transmission. IEEE Commun Lett 24(5):1119–1123. https://doi.org/10.1109/lcomm.2020.2974196

    Article  Google Scholar 

  271. de Sena AS, Nardelli PHJ, da Costa DB, Lima FRM, Yang L, Popovski P, et al (2021) IRS-Assisted Massive MIMO-NOMA Networks with Polarization Diversity. In: 2021 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE

  272. Jiang T, Shi Y (2019) Over-the-Air Computation via Intelligent Reflecting Surfaces. In: 2019 IEEE Global Communications Conference (GLOBECOM). IEEE

  273. Hua S, Shi Y (2019) Reconfigurable Intelligent Surface for Green Edge Inference in Machine Learning. In: 2019 IEEE Globecom Workshops (GC Wkshps). IEEE

  274. Shao X, You C, Zhang R (2024) Intelligent Reflecting Surface Aided Wireless Sensing: Applications and Design Issues. IEEE Wireless Communications. p. 1–7. https://doi.org/10.1109/mwc.004.2300058

  275. You C, Zhang R (2021) Wireless Communication Aided by Intelligent Reflecting Surface: Active or Passive? IEEE Wireless Communications Letters. 10(12):2659–2663. https://doi.org/10.1109/lwc.2021.3111044

    Article  Google Scholar 

  276. Sun R, Wang W, Chen L, Wei G, Zhang W (2022) Diagnosis of Intelligent Reflecting Surface in Millimeter-Wave Communication Systems. IEEE Trans Wireless Commun 21(6):3921–3934. https://doi.org/10.1109/twc.2021.3125734

    Article  Google Scholar 

  277. Jia Y, Ye C, Cui Y (2020) Analysis and Optimization of an Intelligent Reflecting Surface-Assisted System With Interference. IEEE Trans Wireless Commun 19(12):8068–8082. https://doi.org/10.1109/twc.2020.3019088

    Article  Google Scholar 

  278. Hu X, Masouros C, Wong KK (2021) Reconfigurable Intelligent Surface Aided Mobile Edge Computing: From Optimization-Based to Location-Only Learning-Based Solutions. IEEE Trans Commun 69(6):3709–3725. https://doi.org/10.1109/tcomm.2021.3066495

    Article  Google Scholar 

  279. Wang Z, Liu L, Cui S (2020) Channel Estimation for Intelligent Reflecting Surface Assisted Multiuser Communications. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE

  280. Zhu Y, Mao B, Kato N (2022) Intelligent Reflecting Surface in 6G Vehicular Communications: A Survey. IEEE Open Journal of Vehicular Technology. 3:266–277. https://doi.org/10.1109/ojvt.2022.3177253

    Article  Google Scholar 

  281. Pérez-Adán D, Fresnedo O, González-Coma JP, Castedo L (2021) Intelligent Reflective Surfaces for Wireless Networks: An Overview of Applications, Approached Issues, and Open Problems. Electronics 10(19):2345. https://doi.org/10.3390/electronics10192345

    Article  Google Scholar 

  282. Zhang S, Zhang R (2020) Intelligent Reflecting Surface Aided Multiple Access: Capacity Region and Deployment Strategy. In: 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE

  283. Sang J, Yuan Y, Tang W, Li Y, Li X, Jin S, et al (2022) Coverage Enhancement by Deploying RIS in 5G Commercial Mobile Networks: Field Trials. IEEE Wireless Communications. p. 1–21. https://doi.org/10.1109/mwc.011.2200356

  284. Gao J, Zhong C, Chen X, Lin H, Zhang Z (2020) Unsupervised Learning for Passive Beamforming. IEEE Commun Lett 24(5):1052–1056. https://doi.org/10.1109/lcomm.2020.2965532

    Article  Google Scholar 

  285. Zappone A, Di Renzo M, Debbah M, Lam TT, Qian X (2019) Model-Aided Wireless Artificial Intelligence: Embedding Expert Knowledge in Deep Neural Networks for Wireless System Optimization. IEEE Veh Technol Mag 14(3):60–69. https://doi.org/10.1109/mvt.2019.2921627

    Article  Google Scholar 

  286. Zhang C, Patras P, Haddadi H (2019) Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Communications Surveys amp; Tutorials. 21(3):2224–2287. https://doi.org/10.1109/comst.2019.2904897

    Article  Google Scholar 

  287. Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N (2014) Performing Mathematical Operations with Metamaterials. Science 343(6167):160–163. https://doi.org/10.1126/science.1242818

    Article  MathSciNet  Google Scholar 

  288. Liaskos C, Tsioliaridou A, Nie S, Pitsillides A, Ioannidis S, Akyildiz I (2019) An Interpretable Neural Network for Configuring Programmable Wireless Environments. In: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE

  289. Feng K, Wang Q, Li X, Wen CK (2020) Deep Reinforcement Learning Based Intelligent Reflecting Surface Optimization for MISO Communication Systems. IEEE Wireless Communications Letters. 9(5):745–749. https://doi.org/10.1109/lwc.2020.2969167

    Article  Google Scholar 

  290. Van Huynh N, Hoang DT, Lu X, Niyato D, Wang P, Kim DI (2018) Ambient Backscatter Communications: A Contemporary Survey. IEEE Communications Surveys amp; Tutorials. 20(4):2889–2922. https://doi.org/10.1109/comst.2018.2841964

    Article  Google Scholar 

  291. He J, Wymeersch H, Sanguanpuak T, Silven O, Juntti M (2020) Adaptive Beamforming Design for mmWave RIS-Aided Joint Localization and Communication. In: 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). IEEE

  292. Hu S, Rusek F, Edfors O (2018) Beyond Massive MIMO: The Potential of Positioning With Large Intelligent Surfaces. IEEE Trans Signal Process 66(7):1761–1774. https://doi.org/10.1109/tsp.2018.2795547

    Article  MathSciNet  Google Scholar 

  293. Zhao M, Tian Y, Zhao H, Alsheikh MA, Li T, Hristov R, et al (2018) RF-based 3D skeletons. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. SIGCOMM ’18. ACM

  294. Yan Q, Chen W, Poor HV (2018) Big Data Driven Wireless Communications: A Human-in-the-Loop Pushing Technique for 5G Systems. IEEE Wirel Commun 25(1):64–69. https://doi.org/10.1109/mwc.2018.1700209

    Article  Google Scholar 

  295. Cheng X, Fang L, Yang L, Cui S (2017) Mobile Big Data: The Fuel for Data-Driven Wireless. IEEE Internet Things J 4(5):1489–1516. https://doi.org/10.1109/jiot.2017.2714189

    Article  Google Scholar 

  296. Park SY, In Kim D (2020) Intelligent Reflecting Surface-aided Phase-Shift Backscatter Communication. In: 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM). IEEE

  297. Zheng H, Yang Z, Wang G, He R, Ai B (2019) Channel Estimation for Ambient Backscatter Communications with Large Intelligent Surface. In: 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE

  298. Yan W, Yuan X, Kuai X (2020) Passive Beamforming and Information Transfer via Large Intelligent Surface. IEEE Wireless Communications Letters. 9(4):533–537. https://doi.org/10.1109/lwc.2019.2961670

    Article  Google Scholar 

  299. Guan X, Wu Q, Zhang R (2020) Joint Power Control and Passive Beamforming in IRS-Assisted Spectrum Sharing. IEEE Commun Lett 24(7):1553–1557. https://doi.org/10.1109/lcomm.2020.2979709

    Article  Google Scholar 

Download references

Acknowledgements

The authors are pleased to express their gratitude to Sikkim Manipal Institute of Technology, Sikkim Manipal University for their unwavering support and encouragement throughout this research endeavour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samarendra Nath Sur.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwakarma, P., Bhattacharjee, D., Dhar, S. et al. A Comprehensive Review on Beamforming Optimization Techniques for IRS assisted Energy Harvesting. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10118-2

Keywords

Navigation