Skip to main content
Log in

Molecular Dynamics Simulation of Superalloys: A Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The main features of superalloys are included good stability and strength at high temperatures (excellent mechanical strength), creep resistance at high temperatures, resistance to corrosion and oxidation at high operating temperatures, and resistance to thermal deformation at high operating temperatures. Superalloys have different properties, meaning that each alloy has its unique chemical and mechanical properties, so it is necessary to find the physical, mechanical, and chemical properties of superalloys. There are several ways to do this: The experimental method, computational and analytical method, and molecular dynamics simulation method. In this research, Mechanical properties of superalloys have been studied using molecular dynamics simulation. Tensile-pressure behavior of the superalloys, dislocations, hardness behavior, elastic-plastic behavior, crack growth, fatigue properties, and creep behavior have been considered. Eventually, some challenges and future work will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tang YT, Panwisawas C, Ghoussoub JN, Gong Y, Clark JW, Németh AA, Reed RC (2021) Alloys-by-design: application to new superalloys for additive manufacturing. Acta Mater 202:417–436

    Article  Google Scholar 

  2. Qin Z, Wang Z, Wang Y, Zhang L, Li W, Liu J, Liu Y (2021) Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning. Mater Res Lett 9(1):32–40

    Article  Google Scholar 

  3. Zhang Y, Xu X (2021) Lattice misfit predictions via the gaussian process regression for Ni-based single crystal superalloys. Met Mater Int 27(2):235–253

    Article  Google Scholar 

  4. Strickland J, Nenchev B, Tassenberg K, Perry S, Sheppard G, Dong H, Souza D, N (2021) On the origin of mosaicity in directionally solidified Ni-base superalloys. Acta Mater 217:117180

    Article  Google Scholar 

  5. Makineni SK, Singh MP, Chattopadhyay K (2021) Low-Density, high-temperature Co Base superalloys. Annu Rev Mater Sci, 51

  6. Whitfield TE, Pickering EJ, Owen LR, Senkov ON, Miracle DB, Stone HJ, Jones NG (2021) An assessment of the thermal stability of refractory high entropy superalloys. J Alloys Compd 857:157583

    Article  Google Scholar 

  7. Song P, Liu M, Jiang X, Feng Y, Wu J, Zhang G, Lou L (2021) Influence of alloying elements on hot corrosion resistance of nickel-based single crystal superalloys coated with Na2SO4 salt at 900° C. Mater Design 197:109197

    Article  Google Scholar 

  8. Xiao W, Xu Y, Xiao H, Li S, Song L (2021) Investigation of the nb element segregation for laser additive manufacturing of nickel-based superalloys. Int J Heat Mass Transf 180:121800

    Article  Google Scholar 

  9. Guo J, Li Y, Li C, Yu L, Li H, Wang Z, Liu Y (2021) Isothermal oxidation behavior of micro-regions in multiphase Ni3Al-based superalloys. Mater Charact 171:110748

    Article  Google Scholar 

  10. Zhang J, Huang T, Cao K, Chen J, Zong H, Wang D, Liu L (2021) A correlative multidimensional study of γ′ precipitates with Ta addition in re-containing Ni-based single crystal superalloys. J Mater Sci Technol 75:68–77

    Article  Google Scholar 

  11. Katnagallu S, Vernier S, Charpagne MA, Gault B, Bozzolo N, Kontis P (2021) Nucleation mechanism of hetero-epitaxial recrystallization in wrought nickel-based superalloys. Scripta Mater 191:7–11

    Article  Google Scholar 

  12. Gupta S, Bronkhorst CA (2021) Crystal plasticity model for single crystal Ni-based superalloys: capturing orientation and temperature dependence of flow stress. Int J Plast 137:102896

    Article  Google Scholar 

  13. Yu Q, Wang C, Zhao Z, Dong C, Zhang Y (2021) New Ni-based superalloys designed for laser additive manufacturing. J Alloys Compd 861:157979

    Article  Google Scholar 

  14. Liu G, Du D, Wang K, Pu Z, Chang B (2021) Epitaxial growth behavior and stray grains formation mechanism during laser surface re-melting of directionally solidified nickel-based superalloys. J Alloys Compd 853:157325

    Article  Google Scholar 

  15. Chandra S, Tan X, Narayan RL, Wang C, Tor SB, Seet G (2021) A generalised hot cracking criterion for nickel-based superalloys additively manufactured by electron beam melting. Additive Manuf 37:101633

    Article  Google Scholar 

  16. Eggeler YM, Vamsi KV, Pollock TM (2021) Precipitate Shearing, Fault Energies, and Solute Segregation to Planar faults in Ni-, CoNi-, and Co-base superalloys. Annu Rev Mater Sci 51:209–240

    Article  Google Scholar 

  17. Careri F, Imbrogno S, Umbrello D, Attallah MM, Outeiro J, Batista AC (2021) Machining and heat treatment as post-processing strategies for Ni-superalloys structures fabricated using direct energy deposition. J Manuf Process 61:236–244

    Article  Google Scholar 

  18. Wu L, Osada T, Watanabe I, Yokokawa T, Kobayashi T, Kawagishi K (2021) Strength prediction of Ni-base disc superalloys: modified γ′ hardening models applicable to commercial alloys. Mater Sci Engineering: A 799:140103

    Article  Google Scholar 

  19. Panwisawas C, Tang YT, Reed RC (2020) Metal 3D printing as a disruptive technology for superalloys. Nat Commun 11(1):1–4

    Article  Google Scholar 

  20. Hardy MC, Detrois M, McDevitt ET, Argyrakis C, Saraf V, Jablonski PD, Tin S (2020) Solving recent challenges for wrought Ni-base superalloys. Metall Mater Trans A 51(6):2626–2650

    Article  Google Scholar 

  21. Miracle DB, Tsai MH, Senkov ON, Soni V, Banerjee R (2020) Refractory high entropy superalloys (RSAs). Scripta Mater 187:445–452

    Article  Google Scholar 

  22. Wang Z, Zhang L, Li W, Qin Z, Wang Z, Li Z, Jiang L (2020) High throughput experiment assisted discovery of new Ni-base superalloys. Scripta Mater 178:134–138

    Article  Google Scholar 

  23. Zhao Y, Zhang J, Song F, Zhang M, Luo Y, Zhao H, Tang D (2020) Effect of trace boron on microstructural evolution and high temperature creep performance in re-contianing single crystal superalloys. Progress in Natural Science: Materials International 30(3):371–381

    Article  Google Scholar 

  24. Harte A, Atkinson M, Smith A, Drouven C, Zaefferer S, da Fonseca JQ, Preuss M (2020) The effect of solid solution and gamma prime on the deformation modes in Ni-based superalloys. Acta Mater 194:257–275

    Article  Google Scholar 

  25. Cairney J (2020) A rival to superalloys at high temperatures. Science 370(6512):37–38

    Article  Google Scholar 

  26. Chen YT, Chang YJ, Murakami H, Gorsse S, Yeh AC (2020) Designing high entropy superalloys for elevated temperature application. Scripta Mater 187:177–182

    Article  Google Scholar 

  27. Cervellon A, Hémery S, Kürnsteiner P, Gault B, Kontis P, Cormier J (2020) Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature. Acta Mater 188:131–144

    Article  Google Scholar 

  28. Khatavkar N, Swetlana S, Singh AK (2020) Accelerated prediction of Vickers hardness of co-and Ni-based superalloys from microstructure and composition using advanced image processing techniques and machine learning. Acta Mater 196:295–303

    Article  Google Scholar 

  29. Chung DW, Toinin JP, Lass EA, Seidman DN, Dunand DC (2020) Effects of Cr on the properties of multicomponent cobalt-based superalloys with ultra-high γ’volume fraction. J Alloys Compd 832:154790

    Article  Google Scholar 

  30. Liu Y, Wu J, Wang Z, Lu XG, Avdeev M, Shi S, Yu T (2020) Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning. Acta Mater 195:454–467

    Article  Google Scholar 

  31. Sohrabi MJ, Mirzadeh H (2020) Estimation of homogenisation time for superalloys based on a new diffusional model. Mater Sci Technol 36(3):380–384

    Article  Google Scholar 

  32. Dodaran M, Ettefagh AH, Guo SM, Khonsari MM, Meng WJ, Shamsaei N, Shao S (2020) Effect of alloying elements on the γ’antiphase boundary energy in Ni-base superalloys. 117:106670

  33. Korashy A, Attia H, Thomson V, Oskooei S (2020) Fretting wear behavior of Cobalt-based superalloys at high temperature–A comparative study. Tribol Int 145:106155

    Article  Google Scholar 

  34. Ali MA, Görler JV, Steinbach I (2020) Role of coherency loss on rafting behavior of Ni-based superalloys. Comput Mater Sci 171:109279

    Article  Google Scholar 

  35. Feng L, Rao Y, Ghazisaeidi M, Mills MJ, Wang Y (2020) Quantitative prediction of Suzuki segregation at stacking faults of the γ’phase in Ni-base superalloys. Acta Mater 200:223–235

    Article  Google Scholar 

  36. Su Y, Han QN, Zhang CC, Shi HJ, Niu LS, Deng GJ, Rui SS (2019) Effects of secondary orientation and temperature on the fretting fatigue behaviors of Ni-based single crystal superalloys. Tribol Int 130:9–18

    Article  Google Scholar 

  37. Alabbad B, Li L, Tin S (2019) Controlling the grain boundary morphology and secondary γ′ precipitate size distribution in Ni-base superalloys. J Alloys Compd 775:931–941

    Article  Google Scholar 

  38. Li L, Wang C, Chen Y, Yang S, Yang M, Zhang J, Liu X (2019) Effect of Re on microstructure and mechanical properties of γ/γʹ co-ti-based superalloys. Intermetallics 115:106612

    Article  Google Scholar 

  39. Eriş R, Akdeniz MV, Mekhrabov AO (2019) Atomic size effect of alloying elements on the formation, evolution and strengthening of γ′-Ni3Al precipitates in Ni-based superalloys. Intermetallics 109:37–47

    Article  Google Scholar 

  40. Xiao W, Li S, Wang C, Shi Y, Mazumder J, Xing H, Song L (2019) Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys. Mater Design 164:107553

    Article  Google Scholar 

  41. Qian N, Ding W, Zhu Y (2018) Comparative investigation on grindability of K4125 and Inconel718 nickel-based superalloys. Int J Adv Manuf Technol, 97

  42. Babu SS, Raghavan N, Raplee J, Foster SJ, Frederick C, Haines M, Dehoff RR (2018) Additive manufacturing of nickel superalloys: opportunities for innovation and challenges related to qualification. Metall Mater Trans A 49(9):3764–3780

    Article  Google Scholar 

  43. Barba D, Smith TM, Miao J, Mills MJ, Reed RC (2018) Segregation-assisted plasticity in Ni-based superalloys. Metall Mater Trans A 49(9):4173–4185

    Article  Google Scholar 

  44. Kontis P, Li Z, Collins DM, Cormier J, Raabe D, Gault B (2018) The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys. Scripta Mater 145:76–80

    Article  Google Scholar 

  45. Makineni SK, Lenz M, Kontis P, Li Z, Kumar A, Felfer PJ, Gault B (2018) Correlative microscopy—novel methods and their applications to explore 3D chemistry and structure of nanoscale lattice defects: a case study in superalloys. Jom 70(9):1736–1743

    Article  Google Scholar 

  46. Xu WW, Shang SL, Wang CP, Gang TQ, Huang YF, Chen LJ, Liu ZK (2018) Accelerating exploitation of co-al-based superalloys from theoretical study. Mater Design 142:139–148

    Article  Google Scholar 

  47. Wu X, Makineni SK, Kontis P, Dehm G, Raabe D, Gault B, Eggeler G (2018) On the segregation of re at dislocations in the γ’phase of Ni-based single crystal superalloys. Materialia 4:109–114

    Article  Google Scholar 

  48. Volz N, Zenk CH, Cherukuri R, Kalfhaus T, Weiser M, Makineni SK, Göken M (2018) Thermophysical and mechanical properties of advanced single crystalline co-base superalloys. Metall Mater Trans A 49(9):4099–4109

    Article  Google Scholar 

  49. Chauvet E, Tassin C, Blandin JJ, Dendievel R, Martin G (2018) Producing Ni-base superalloys single crystal by selective electron beam melting. Scripta Mater 152:15–19

    Article  Google Scholar 

  50. Perrut M, Caron P, Thomas M, Couret A (2018) High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys. CR Phys 19(8):657–671

    Article  Google Scholar 

  51. Kazantseva NV, Stepanova NN, Rigmant MB (2018) Superalloys: analysis and control of failure process. CRC Press

  52. Kolb M, Freund LP, Fischer F, Povstugar I, Makineni SK, Gault B, Göken M (2018) On the grain boundary strengthening effect of boron in γ/γ′ cobalt-base superalloys. Acta Mater 145:247–254

    Article  Google Scholar 

  53. Eskandari M, Yeganeh M, Motamedi M (2012) Investigation in the corrosion behaviour of bulk nanocrystalline 316L austenitic stainless steel in NaCl solution. Micro & Nano Letters 7(4):380–383

    Article  Google Scholar 

  54. Motamedi M, Eskandari M, Yeganeh M (2012) Effect of straight and wavy carbon nanotube on the reinforcement modulus in nonlinear elastic matrix nanocomposites. Mater Design 34:603–608

    Article  Google Scholar 

  55. Motamedi M, Mehrvar A, Nikzad M (2022) Mechanical properties of aluminum/SiNT nanocomposite. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 09544062221112798

  56. Motamedi M, Mehrvar A, Nikzad M (2022) Statistical modelling and optimization of AL/CNT composite using response surface-desirability approach. Comput Part Mech, 1–11

  57. Motamedi M, Safdari E, Nikzad M (2021) Effect of different parameters on the heat transfer coefficient of silicon and carbon nanotubes. Int Commun Heat Mass Transfer 129:105692

    Article  Google Scholar 

  58. Lu X, Yang P, Luo J, Ren J, Xue H, Ding Y Tensile mechanical performance of Ni–Co alloy nanowires by molecular dynamics simulation. RSC advances, 9(44), 25817–25828. 59. Zhou, J., Cui S (2019) (2019). Effect of mismatch degree on mechanical properties of Ni-based single crystal alloy under force-temperature coupling. Materials Research Express, 6(7), 076503

  59. Zhou J, Cui S (2019) Effect of mismatch degree on mechanical properties of Ni-based single crystal alloy under force-temperature coupling. Mater Res Express 6(7):076503

    Article  Google Scholar 

  60. Li W, Yin Y, Nan H, Xu Q, Zhou J, Shen X, Yu W (2019) Indentation response of γ-TiAl (111) and influence of true-twin interface. Procedia Manuf 37:190–194

    Article  Google Scholar 

  61. Song J, Gao Z, Zhang L, Wu W, He B, Lu L (2019) Prediction on elastic properties of Nb-doped ni systems. Mol Simul 45(12):935–941

    Article  Google Scholar 

  62. Wang D, Wang C, Yu T (2019) Effects of Re, W and Co on dislocation nucleation at the crack tip in the γ-phase of Ni-based single-crystal superalloys by atomistic simulation. Royal Soc open Sci 6(7):190441

    Article  Google Scholar 

  63. Yu J, Dong C, Zhang Q, Li B, Liu R (2019) Temperature and crystal orientation dependence of dislocation slip and twin nucleation in bilayer Ni/Ni3Al interface. Comput Mater Sci 162:162–170

    Article  Google Scholar 

  64. Wu R, Yin Q, Wang J, Mao Q, Zhang X, Wen Z (2021) Effect of Re on mechanical properties of single crystal Ni-based superalloys: insights from first-principle and molecular dynamics. J Alloys Compd 862:158643

    Article  Google Scholar 

  65. Yin Q, Wu R, Wang J, Chen S, Lian Y, Wen Z (2021) Elastoplastic behavior of the γ-phase in Ni-based single crystal superalloys: a molecular dynamics study considering re and temperature effect. Mech Mater 160:103989

    Article  Google Scholar 

  66. Faiyad A, Munshi MAM, Islam MM, Saha S (2021) Deformation mechanisms of Inconel-718 at the nanoscale by molecular dynamics. Phys Chem Chem Phys 23(17):10650–10661

    Article  Google Scholar 

  67. Mitra S, Rahman MH, Motalab M, Rakib T, Bose P (2021) Tuning the mechanical properties of functionally graded nickel and aluminium alloy at the nanoscale. RSC Adv 11(49):30705–30718

    Article  Google Scholar 

  68. Liu ZG, Wang CY, Yu T (2013) Influence of Re on the propagation of a Ni/Ni3 Al interface crack by molecular dynamics simulation. Modell Simul Mater Sci Eng 21(4):045009

    Article  Google Scholar 

  69. Popoola AI, Lowther JE (2014) Computational Study of Platinum Group Superalloys. Int J Mod Phys B 28(09):1450066

    Article  Google Scholar 

  70. Wu W, Guo Y, Wang Y (2012) Evolution of misfit dislocation network and tensile properties in Ni-based superalloys: a molecular dynamics simulation, vol 55. Science China Physics, Mechanics and Astronomy, pp 419–427. 3

  71. Wu B, Zhou J, Xue C, Liu H (2015) Molecular dynamics simulation of the deposition and annealing of NiAl film on Ni substrate. Appl Surf Sci 355:1145–1152

    Article  Google Scholar 

  72. Yang X, Hu W (2014) The alloying element dependence of the local lattice deformation and the elastic properties of Ni3Al: a molecular dynamics simulation. J Appl Phys 115(15):153507

    Article  Google Scholar 

  73. Tao Y, Hong-Xian X, Chong-Yu W (2012) Effect of H impurity on misfit dislocation in Ni-based single-crystal superalloy: molecular dynamic simulations. Chin Phys B 21(2):026104

    Article  Google Scholar 

  74. Yu J, Zhang Q, Liu R, Yue Z, Tang M, Li X (2014) Molecular dynamics simulation of crack propagation behaviors at the Ni/Ni 3 Al grain boundary. RSC Adv 4(62):32749–32754

    Article  Google Scholar 

  75. Yu J, Zhang Q, Yue Z, Liu R, Tang M, Li X (2015) Molecular Dynamics Simulation of dislocation and phase transition for Ni-Based superalloys with twist grain boundary. J Comput Theor Nanosci 12(6):1002–1005

    Article  Google Scholar 

  76. Liu H, Wang XM, Liang H, Zhao ZN, Li L, Yue ZF, Deng CH (2020) The effect of void defect on the evolution mechanisms of dislocations and mechanical properties in nickel-based superalloys by molecular dynamics simulation of real γ/γ′ structures. Int J Solids Struct 191:464–472

    Article  Google Scholar 

  77. Li H, Du W, Liu Y (2020) Molecular Dynamics Study of Tension process of Ni-Based Superalloy. Acta Metall Sinica (English Letters) 33(5):741–750

    Article  Google Scholar 

  78. Ding J, Zhang SL, Tong Q, Wang LS, Huang X, Song K, Lu SQ (2020) The effects of Grain Boundary Misorientation on the Mechanical Properties and mechanism of Plastic deformation of Ni/Ni3Al: a Molecular Dynamics Study. Materials 13(24):5715

    Article  Google Scholar 

  79. Liu J (2020) Molecular dynamic study of temperature dependence of mechanical properties and plastic inception of CoCrCuFeNi high-entropy alloy. Phys Lett A 384(22):126516

    Article  Google Scholar 

  80. Mitra S, Rahman M, Motalab M, Rakib T, Bose P (2020) Investigation on the Mechanical properties of functionally graded Nickel and Aluminium Alloy by Molecular Dynamics Study. arXiv preprint arXiv:2004.05651.

  81. Li NL, Wu WP, Nie K (2018) Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys. Phys Lett A 382(20):1361–1367

    Article  Google Scholar 

  82. Šesták P, Friák M, Holec D, Všianská M, Šob M (2018) Strength and brittleness of interfaces in Fe-Al superalloy nanocomposites under multiaxial loading: an ab initio and atomistic study. Nanomaterials 8(11):873

    Article  Google Scholar 

  83. Shang J, Yang F, Li C, Wei N, Tan X (2018) Size effect on the plastic deformation of pre-void Ni/Ni3Al interface under uniaxial tension: a molecular dynamics simulation. Comput Mater Sci 148:200–206

    Article  Google Scholar 

  84. Reddy KV, Pal S (2018) Analysis of deformation behaviour of Al–Ni–Co thin film coated aluminium during nano-indentation: a molecular dynamics study. Mol Simul 44(17):1393–1401

    Article  Google Scholar 

  85. Feng R, Song W, Li H, Qi Y, Qiao H, Li L (2018) Effects of annealing on the residual stress in γ-TiAl alloy by molecular dynamics simulation. Materials 11(6):1025

    Article  Google Scholar 

  86. Huang JF, Wang ZL, Yang EF, McGlinchey D, Luo YX, Li Y, Chen Y (2017) Molecular dynamics simulation of persistent slip bands formation in nickel-base superalloys. Int J Autom Comput 14(1):68–79

    Article  Google Scholar 

  87. Ma L, Xiao S, Deng H, Hu W (2016) Tensile mechanical properties of Ni-based superalloy of nanophases using molecular dynamics simulation. Phys Status Solidi (b) 253(4):726–732

    Article  Google Scholar 

  88. Li YL, Wu WP, Ruan ZG (2016) Molecular dynamics simulation of the evolution of interfacial dislocation network and stress distribution of a Ni-based single-crystal superalloy. Acta Metall Sinica (English Letters) 29(7):689–696

    Article  Google Scholar 

  89. Wu HN, Xu DS, Wang H, Yang R (2016) Molecular dynamics simulation of tensile deformation and fracture of γ-TiAl with and without surface defects. J Mater Sci Technol 32(10):1033–1042

    Article  Google Scholar 

  90. Li Y, Lv M, Liang H (2016) Local structural arrangement of Amorphous Al-Ni-Co Alloy during Uniaxial Tension: a Molecular Dynamics Study. Mater Trans, MG201621

  91. Xiong K, Lu H, Gu J (2016) Atomistic simulations of the nanoindentation-induced incipient plasticity in Ni3Al crystal. Comput Mater Sci 115:214–226

    Article  Google Scholar 

  92. Yu J, Zhang S, Zhang Q, Liu R, Tang M, Li X (2016) Simulation study and experiment verification of the creep mechanism of a nickel-based single crystal superalloy obtained from microstructural evolution. RSC Adv 6(109):107748–107758

    Article  Google Scholar 

  93. Yang R, Tang B, Gao T (2016) A comparison of mechanical properties between Al and Al3Mg. Int J Mod Phys B 30(1):1550243

    Article  Google Scholar 

  94. Wu WP, Guo YF, Wang YS, Mueller R, Gross D (2011) Molecular dynamics simulation of the structural evolution of misfit dislocation networks at γ/γ′ phase interfaces in Ni-based superalloys. Phil Mag 91(3):357–372

    Article  Google Scholar 

  95. Buršík J (2011) Elastic parameters of various rafted structures of model Ni-base alloys. In Key Engineering Materials (Vol. 465, pp. 85–88). Trans Tech Publications Ltd

  96. Miura H, Suzuki K, Sasaki Y, Sano T, Murata N (2011, January) High temperature damage of Ni-base superalloy caused by the change of microtexture due to the strain-induced anisotropic diffusion of component elements. ASME Int Mech Eng Congress Exposition (Vol 54907:1649–1655

  97. Khoei AR, Eshlaghi GT, Shahoveisi S (2021) Atomistic simulation of creep deformation mechanisms in nickel-based single crystal superalloys. Mater Sci Engineering: A 809:140977

    Article  Google Scholar 

  98. Zhu T, Wang CY, Gan Y (2010) Effect of re in γ phase, γ′ phase and γ/γ′ interface of Ni-based single-crystal superalloys. Acta Mater 58(6):2045–2055

    Article  Google Scholar 

  99. Xie HX, Wang CY, Yu T (2009) Motion of misfit dislocation in an Ni/Ni3Al interface: a molecular dynamics simulations study. Modell Simul Mater Sci Eng 17(5):055007

    Article  Google Scholar 

  100. Hong-Xian X, Chong-Yu W, Tao Y, Jun-Ping D (2009) Dislocation formation and twinning from the crack tip in Ni3Al: molecular dynamics simulations. Chin Phys B 18(1):251

    Article  Google Scholar 

  101. Xu D, Wang H, Yang R, Veyssiere P (2008) Molecular dynamics investigation of deformation twinning in γ-TiAl sheared along the pseudo-twinning direction. Acta Mater 56(5):1065–1074

    Article  Google Scholar 

  102. Starostenkov MD, Sinyaev DV, Rakitin RY, Poletaev GM (2008) Diffusion mechanisms near tilt grain boundaries in Ni3Al intermetallide. Solid state Phenomena, vol 139. Trans Tech Publications Ltd, pp 89–94

  103. Lekka CE, Evangelakis GA (2007) Dynamical properties of the Ni3Al low index surfaces with and without ni or Al adatoms from molecular dynamics simulations. Mater Chem Phys 103(2–3):500–507

    Article  Google Scholar 

  104. Tao Z, Chong-Yu W (2006) Molecular dynamics study of mosaic structure in the Ni-based single-crystal superalloy. Chin Phys 15(9):2087

    Article  Google Scholar 

  105. Zhu T, Wang CY (2005) Misfit dislocation networks in the γ∕ γ′ phase interface of a Ni-based single-crystal superalloy: molecular dynamics simulations. Phys Rev B 72(1):014111

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and implementation of the research, to the analysis of the results, and to the writing of the manuscript.

Corresponding author

Correspondence to M. Motamedi.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motamedi, M., Nikzad, M. & Nasri, M. Molecular Dynamics Simulation of Superalloys: A Review. Arch Computat Methods Eng 31, 2417–2429 (2024). https://doi.org/10.1007/s11831-023-10051-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-10051-w

Keywords

Navigation