Skip to main content
Log in

Design and Analysis of Three-Dimensional Foams: A Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Foams exhibit a low-density characteristic and possess a notable level of structural rigidity. Consequently, they are frequently observed in natural formations such as wood and bones. However, in modern society, foams are predominantly employed for functional purposes rather than structural ones. Moreover, there has been significant progress in the development of structural–functional integrated applications that extensively utilize foam materials. Foams find numerous applications in different fields, major of these including metal foams for lightweight construction, crash energy absorption, thermal insulation, and acoustic management; ceramic foams for thermal management systems and high-temperature appliances; polymer foams in packaging, and cushioning. The selection of materials for the aforementioned applications is mostly based on structure–property correlations. Due to the inherent complexity and time-consuming nature of material tests and characterization in predicting the topology of foam microstructures, a potential avenue for foam material design lies in the theoretical or analytical prediction of microstructural topology. The main objective of this study is to investigate the structure–property correlation of foams, different structural models, computational algorithms, and non-destructive technologies. However, the overall design of the foam microstructure was achieved through the utilization of two reengineering approaches, namely forward engineering and reverse engineering. All the models that have been designed are thoroughly examined in terms of their advantages and disadvantages. Additionally, we discuss thoroughly the requirement for economical, streamlined, and effective technology in order to establish the structure–property correlations of foams, to achieve a 3D realistic microstructure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Gibson LJ, Ashby MF (1999) Cellular solids structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  2. Banhart J, Baumeister J, Weber M (1997) Metal foams near commercialization. Met Powder Rep 4:38–41

    Google Scholar 

  3. Liu PS, Lang KM (2001) Functional materials of porous metals made by P/M, electroplating, and some other techniques. J Mater Sci 36:5059–5072

    Article  Google Scholar 

  4. Liu PS, Yu B, Hu AM, Lang KM, Gu SR (2001) Development in applications of porous metals. Trans Nonferrous Met Soc China 11:629–638

    Google Scholar 

  5. Patel K, Manocha S, Manocha LM (2016) Carbon and silica-based foams preparation and application review. LAP LAMBERT Academic Publishing, Saarbrücken

    Google Scholar 

  6. Chen Y, Wang N, Ola O, Xia Y, Zhu Y (2021) Porous ceramics: light in weight but heavy in energy and environment technologies. Mater Sci Eng R 143:100589

    Article  Google Scholar 

  7. Lei H, Cao X (2015) A novel carbon foam : making carbonaceous lather from biomass. J Mater Sci 50:5318–5327

    Article  Google Scholar 

  8. Xiao N, Zhou Y, Ling Z, Zhao Z, Qiu J (2013) Carbon foams made of in situ produced carbon nanocapsules and the use as a catalyst for oxidative dehydrogenation of ethylbenzene. Carbon N Y 60:514–522

    Article  Google Scholar 

  9. Sarzynski MD (2003) Carbon foam characterization: sandwich flexure, tensile and shear response. MS thesis, Texas A&M University

  10. Liu PS, Chen GF (2014) Chapter eight - applications of polymer foams. In porous materials, processing and applications. Butterworth-Heinemann, Boston, pp 383–410

    Google Scholar 

  11. Gong L (2005) The compressive response of open-cell foams. Ph.D thesis, The University of Texas at Austin

  12. Arenas JP, Crocker M (2010) Recent trends in porous sound-absorbing materials. Sound Vib 44:12–17

    Google Scholar 

  13. Tsyntsarski B, Petrova B, Budinova T, Petrov N, Popova A (2009) Synthesis and characterization of carbon foam by low pressure foaming process using H2S04 modified pitch as precursor. Bul Chem Commun 41:397–403

    Google Scholar 

  14. Liu PS, Chen GF (2014) Chapter six - applications of porous ceramics, Oxford Elsevier Science & Technology. Butterworth-Heinemann, Boston, pp 303–344

    Google Scholar 

  15. Klett J, Hardy R, Romine E, Walls C, Burchell T (2000) High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties. Carbon 38:953–973

    Article  Google Scholar 

  16. Scheffler M, Colombo P (2005) Cellular ceramics: structure, manufacturing, properties and applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  17. Gong L, Kyriakides S, Jang WY (2005) Compressive response of open-cell foams. Part I: Morphology and elastic properties. Int J Solids Struct 42:1355–1379

    Article  Google Scholar 

  18. Rajak DK, Kumaraswamidhas LA, Das S (2014) An energy absorption behaviour of foam filled structures. Procedia Mater Sci 5:164–172

    Article  Google Scholar 

  19. Liu T (1999) Preparation of polyurethane foam for packaging. Polyure Indus 14:32–34

    Google Scholar 

  20. Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Processing of biocompatible porous Ti and Mg. Scr Mater 45:1147–1153

    Article  Google Scholar 

  21. Singh S, Bhatnagar N (2018) A survey of fabrication and application of metallic foams. J Porous Mater 25:537–554

    Article  Google Scholar 

  22. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510

    Article  Google Scholar 

  23. Parthkumar P, Bhingole PP, Makwana D (2018) Manufacturing, characterization and applications of lightweight metallic foams for structural applications: review. Mater Today Proc 5:20391–20402

    Article  Google Scholar 

  24. Gan YX, Chen C, Shen YP (2005) Three-dimensional modeling of the mechanical property of linearly elastic open cell foams. Int J Solids Struct 42:6628–6642

    Article  Google Scholar 

  25. Stone R M (1997) Strength and stiffness of cellular foamed materials, Ph.D. Thesis, The University of Arizona

  26. Li K, Gao XL, Roy AK (2003) Micromechanics model for three-dimensional open-cell foams using a tetrakaidecahedral unit cell and Castigliano’s second theorem. Compos Sci Technol 63:1769–1781

    Article  Google Scholar 

  27. Plateau J (1873) Experimental and theoretical statics of liquids subject to molecular forces only. Gauthier-Villars, Paris

    Google Scholar 

  28. Thomson W (1887) LXIII. On the division of space with the minimum partitional area. Phil Mag 24:503

    Article  Google Scholar 

  29. Ko WL (1965) Deformations of foamed elastomers. J Cell Plast 04:45–50

    Article  Google Scholar 

  30. Brakke KA (1992) The surface evolver. Exp Math 1(2):141–165

    Article  MathSciNet  Google Scholar 

  31. Weaire D, Phelan R (1994) A counter-example to Kelvin’s conjecture on minimal Surfaces. Philos Mag Lett 69:107–110

    Article  Google Scholar 

  32. Gibson LJ, Ashby MF (1982) The mechanics of three-dimensional cellular materials. Proc R Soc Lond A 382:43–59

    Article  Google Scholar 

  33. Sihn S, Roy AK (2004) Modeling and prediction of bulk properties of open-cell carbon foam. J Mech Phys Solids 52:167–191

    Article  Google Scholar 

  34. Druma C, Alam MK, Druma AM (2004) Finite element model of thermal transport in carbon foams. J Sandwich Struct Mater 6:527–540

    Article  Google Scholar 

  35. Li K, Gao XL, Roy AK (2005) Micromechanical modeling of three-dimensional open-cell foams using the matrix method for spatial frames. Compos B Eng 36:249–262

    Article  Google Scholar 

  36. Yu Q, Thompson BE, Straatman AG (2006) A unit cube-based model for heat transfer and fluid flow in porous carbon foam. Transactions of the ASME. J Heat Transfer 128:352–360

    Article  Google Scholar 

  37. Krishnan S, Murthy JY, Garimella SV (2006) Direct simulation of transport in open-cell metal foam. J Heat Transfer 128:793–799

    Article  Google Scholar 

  38. Bai M, Chung JN (2011) Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams. Int J Therm Sci 50(6):869–880

    Article  Google Scholar 

  39. Horneber T, Rauh C, Delgado A (2012) Fluid dynamic characterization of porous solids in catalytic fixed-bed reactors. Microporous Mesoporous Mater 154:170–174

    Article  Google Scholar 

  40. Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103

    Article  Google Scholar 

  41. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  Google Scholar 

  42. Cheah CM, Chua CK, Leong KF, Chua SW (2003) Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: investigation and classification. Int J Adv Manuf Technol 21:291–301

    Article  Google Scholar 

  43. Suleiman AS, Dukhan N (2014) Long-domain simulation of flow in open-cell mesoporous metal foam and direct comparison to experiment. Microporous Mesoporous Mater 196:104–114

    Article  Google Scholar 

  44. Guest JK, Prévost JH (2006) Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43:7028–7047

    Article  Google Scholar 

  45. Hollister SJ, Kikuchi N (1992) A comparison of homogenization and standard mechanics analyses for periodic porous composites. Comput Mech 10:73–95

    Article  Google Scholar 

  46. McIntosh L, Cordell JM, WagonerJohnson AJ (2009) Impact of bone geometry on effective properties of bone scaffolds. Acta Biomater 5(2):680–692

    Article  Google Scholar 

  47. Mullen L et al (2009) Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J Biomed Mater Res B Appl Biomater 89(2):325–334

    Article  Google Scholar 

  48. Fang Z, Starly B, Sun W (2005) Computer-aided characterization for effective mechanical properties of porous tissue scaffolds. Comput Aided Des 37(1):65–72

    Article  Google Scholar 

  49. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  Google Scholar 

  50. Hollister SJ, Fyhrie DP, Jepsen KJ, Goldstein SA (1991) Application of homogenization theory to the study of trabecular bone mechanics. J Biomech 24:825–839

    Article  Google Scholar 

  51. Ko CC, Kohn DH, Hollister SJ (1994) Characterizing elastic properties of biomaterial interphase composites: comparison of experimental and analytical results. ASME, Chicago, IL, USA

    Google Scholar 

  52. Borodkin JL, Hollister SJ (1995) Homogenization and direct estimates of trabecular tissue strains. ASME, Beever Creek, CO, USA

    Google Scholar 

  53. Hollister SJ (1994) A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 27:433–444

    Article  Google Scholar 

  54. Hollister SJ, Kikuchi N (1994) Homogenization theory and digital imaging: A basis for studying the mechanics and design principles of bone tissue. Biotechnol Bioeng 43:586–596

    Article  Google Scholar 

  55. Fyhrie DP et al (1989) Predicting trabecular bone strength and micro-strain using homogenization theory. J Biomech 22:1014

    Article  Google Scholar 

  56. Khatam H, Pindera MJ (2009) Parametric finite-volume micromechanics of periodic materials with elastoplastic phases. Int J Plast 25:1386–1411

    Article  Google Scholar 

  57. Porfiri M, Nguyen N, Gupta N (2009) Thermal conductivity of multiphase particulate composite materials. J Mater Sci 44:1540–1550

    Article  Google Scholar 

  58. Warren WE, Kraynik AM (1988) The linear elastic properties of open-cell foams. J Appl Mech 55(2):341–346

    Article  Google Scholar 

  59. Zhu HX, Knott JF, Mills NJ (1997) Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. J Mech Phys Solids 45:319–343

    Article  Google Scholar 

  60. Gong L, Kyriakides S (2005) Compressive response of open cell foams Part II: Initiation and evolution of crushing. Int J Solids Struct 42:1381–1399

    Article  Google Scholar 

  61. Menges G, Knipschild F (1975) Estimation of mechanical properties for rigid polyurethane foams. Polym Eng Sci 15:623–627

    Article  Google Scholar 

  62. Dement’ev A G, Tarakanov O G, (1970) Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6:519–525

    Google Scholar 

  63. Paul A, Ramamurty U (2000) Strain rate sensitivity of a closed-cell aluminum foam. Mater Sci Eng A 281:1–7

    Article  Google Scholar 

  64. Ramachandra S, Kumar PS, Ramamurty U (2003) Impact energy absorption in an Al foam at low velocities. Scr Mater 49:741–745

    Article  Google Scholar 

  65. Banhart J, Berlin H (2005) Aluminium foams for lighter vehicles. Int J Vehicle Design 37:114–125

    Article  Google Scholar 

  66. https://www.win.tue.nl/~wstomv/math-art/sqrt2-rhombuses/images/

  67. https://mathworld.wolfram.com/Trapezo-RhombicDodecahedron.html

  68. Emanuel AL, Jiayin L, Rycroft CH (2022) Voronoi cell analysis: the shapes of particle system. Am J Phys 90:469–480

    Article  Google Scholar 

  69. Voronoi G (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908:198–287

    Article  MathSciNet  Google Scholar 

  70. Chen Y, Das R, Battley M (2016) Finite element analysis of the compressive and shear responses of structural foams using computed tomography. Compos Struct 159:784–799

    Article  Google Scholar 

  71. Matzke EB (1946) The three-dimensional shape of bubbles in foam-an analysis of the role of surface forces in three-dimensional cell shape determination. Am J Bot 33:58–80

    Article  Google Scholar 

  72. Ribeiro-Ayeh S (2005) Finite element modeling of the mechanics of solid foam materials. KTH Royal Institute of Technology, Stockholm

    Google Scholar 

  73. Köll J, Hallström S (2011) Morphology effects on constitutive properties of foams. 18th International conference on composite materials, Jeju Island, South Korea

  74. Silva MJ, Hayes WC, Gibson LJ (1995) The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int J Mech Sci 11:1161–1177

    Article  Google Scholar 

  75. Silva MJ, Gibson LJ (1997) The effect of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int J Mech Sci 39:549–563

    Article  Google Scholar 

  76. Chen C, Lu TJ, Fleck NA (1999) Effect of imperfections on the yielding of two-dimensional foams. J Mech Phys Solids 47:2235–2272

    Article  Google Scholar 

  77. Lu TJ, Chen C (1999) Thermal transport and fire retardance properties of cellular aluminium alloys. Acta Mater 47:1469–1485

    Article  Google Scholar 

  78. Shulmeister V, Van der Burg MWD, Van der Giessen E, Marissen R (1998) A numerical study of large deformations of low-density elastomeric open-cell foams. Mech Mater 30:125–140

    Article  Google Scholar 

  79. Roberts AP, Garboczi EJ (2001) Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Mater 49:189–197

    Article  Google Scholar 

  80. Roberts AP, Garboczi EJ (2002) Elastic properties of model random three-dimensional open-cell solids. J Mech Phys Solids 50:33–55

    Article  Google Scholar 

  81. Zhu HX, Hobdell JR, Windle AH (2000) Effects of cell irregularity on the elastic properties of open-cell foams. Acta Mater 48(20):4893–4900

    Article  Google Scholar 

  82. Zhu HX, Windle AH (2002) Effects of cell irregularity on the high strain compression of open-cell foams. Acta Mater 50:1041–1052

    Article  Google Scholar 

  83. Li K, Gao XL, Subhash G (2006) Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell foams. J Mech Phys Solids 54:783–806

    Article  Google Scholar 

  84. Yanze S, Zhihua W, Jian LZ, L, (2010) Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model. Mater Des 31:4281–4289

    Article  Google Scholar 

  85. Shulmeister V, van der Burg MWD, van der Giessen E, Marissen R (1998) A numerical study of large deformations of low-density elastomeric open-cell foams. Mech Mater 30(2):125–140

    Article  Google Scholar 

  86. Glaessgen E, Phillips D, Iesulauro E, Saether E, Piascik R (2003) A multiscale approach to modeling fracture in metallic materials containing nonmetallic inclusions. Structural Dynamics and Materials conference, Norfolk, Virginia

  87. Lautensack C (2008) Fitting three-dimensional Laguerre tessellations to foam structures. J Appl Stat 35:985–995

    Article  MathSciNet  Google Scholar 

  88. Kanaun S, Tkachenko O (2006) Mechanical properties of open cell foams: simulations by Laguerre tessellation procedure. Int J Fract 140:305–312

    Article  Google Scholar 

  89. Redenbach C (2009) Microstructure models for cellular materials. Comput Mater Sci 44:1397–1407

    Article  Google Scholar 

  90. Redenbach C, Shklyar I, Andrä H (2012) Laguerre tessellations for elastic stiffness simulations of closed foams with strongly varying cell sizes. Int J Eng Sci 50:70–78

    Article  Google Scholar 

  91. Chen Y, Das R, Battley M (2017) Effects of cell size and cell wall thickness variations on the strength of closed-cell foams. Int J Eng Sci 120:220–240

    Article  Google Scholar 

  92. Geißendörfer M, Liebscher A, Proppe C, Redenbach C, Schwarzer D (2014) Stochastic multiscale modeling of metal foams. Probab Eng Mech 37:132–137

    Article  Google Scholar 

  93. Fan Z, Wu Y, Zhao X, Lu Y (2004) Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres. Comput Mater Sci 29(3):301–308

    Article  Google Scholar 

  94. Kraynik AM, Reinelt DA, van Swol F (2004) Structure of random foam. Phys Rev Lett 93:208301

    Article  Google Scholar 

  95. Kingman JFC (1993) Poisson processes. Clarendon Press, Oxford (UK)

    Google Scholar 

  96. Gezer F, Aykroyd RG, Barber S (2020) Statistical properties of poisson voronoi tessellation cells in bounded regions. J Stat Comput Simul 91(5):915–933

    Article  MathSciNet  Google Scholar 

  97. Ripley BD (2004) Spatial statistics. John Wiley & Sons Inc, Hoboken

    Google Scholar 

  98. Meijering JL (1953) Interface area, edge length, and number of vertices in crystal aggregates with random nucleation. Philips Res Rep 8:270–290

    Google Scholar 

  99. Gilbert EN (1962) Random subdivisions of space into crystals. Ann Math Statist 33:958–972

    Article  MathSciNet  Google Scholar 

  100. Mason JK, Ehrenborg R, Lazar EA (2012) A geometric formulation of the law of Aboav-Weaire in two and three dimensions. J Phys A: Math Theor 45:065001

    Article  MathSciNet  Google Scholar 

  101. Mahin KW, Hanson KJ, Morris W (1980) Comparative analysis of the cellular and Johnson-Mehl microstructures through computer simulation. Acta Metall 28:443–453

    Article  Google Scholar 

  102. Andrade PN, Fortes MA (1988) Distribution of cell volumes in a Voronoi partition. Phil Mag B 58:671–674

    Article  Google Scholar 

  103. Kumar S, Kurtz SK, Banavar JR, Sharma MG (1992) Properties of a three-dimensional Poisson-Voronoi tessellation: a Monte Carlo study. J Statist Phys 67:523–551

    Article  Google Scholar 

  104. Kumar S, Kurtz SK, Carlo M (1995) Study of angular and edge length distributions in a three-dimensional Poisson-Voronoi tessellation. Mater Character 34:15–27

    Article  Google Scholar 

  105. Ferenc JS, Néda Z (2007) On the size distribution of Poisson Voronoi cells. Physica A 385(2):518–526

    Article  Google Scholar 

  106. Fritzen F, Böhlke T, Schnack E (2008) Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations. Comput Mech 43:701–713

    Article  Google Scholar 

  107. Hanson HG (1983) Voronoi cell properties from simulated and real random spheres and points. J Statist Phys 30:591–605

    Article  MathSciNet  Google Scholar 

  108. Oger L, Gervois A, Troadec JP, Rivier N (1996) Voronoi tessellation of packings of spheres: topological correlation and statistics. Phil Mag B 74:177–197

    Article  Google Scholar 

  109. Lucarini V (2009) Three-dimensional random Voronoi tessellations: From cubic crystal lattices to Poisson point processes. J Statist Phys 134:185–206

    Article  MathSciNet  Google Scholar 

  110. Kumar VS, Kumaran V (2005) Voronoi cell volume distribution and configurational entropy of hard-spheres. J Chem Phys 123:114501

    Article  Google Scholar 

  111. Zhu HX et al (2014) The effects of regularity on the geometrical properties of Voronoi tessellations. Physica A 406:42–58

    Article  MathSciNet  Google Scholar 

  112. Grenestedt LJ, Tanaka K (1998) Influence of cell shape variations on elastic stiffness of closed cell cellular solids. Scripta Mater 40:71–77

    Article  Google Scholar 

  113. Liu H (2014) Preparation and characterization of carbon foams with high mechanical strength using modified coal tar pitches. J Anal Appl Pyrol 110:442–447

    Article  Google Scholar 

  114. Falco S, Siegkas P, Barbieri E et al (2014) A new method for the generation of arbitrarily shaped 3D random polycrystalline domains. Comput Mech 54:1447–1460

    Article  MathSciNet  Google Scholar 

  115. Dobrich K, Rau M, Krill CE III (2004) Quantitative characterization of the three-dimensional microstructure of polycrystalline Al–Sn using X-ray microtomography. Metall Mater Trans A 35:1953–1961

    Article  Google Scholar 

  116. Rowenhorst DJ, Lewis AC, Spanos G (2010) Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy. Acta Mater 58:5511–5519

    Article  Google Scholar 

  117. Zhengwei N, Yuyi L, Qingbin T (2017) Modeling structures of open cell foams. Comput Mater Sci 131:161–169

    Google Scholar 

  118. Fan Z, Wu Y, Zhao X, Lu Y (2004) Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres. Comput Mater Sci 29:301–308

    Article  Google Scholar 

  119. Wejrzanowski T, Skibinski J, Szumbarski J, Kurzydlowski KJ (2013) Structure of foams modeled by Laguerre-Voronoi tessellations. Comput Mater Sci 67:216–221

    Article  Google Scholar 

  120. Skibinski J, Cwieka K, Kowalkowski T et al (2015) The influence of pore size variation on the pressure drop in open-cell foams. Mater Des 87:650–655

    Article  Google Scholar 

  121. Zheng X, Sun T, Zhou J, Zhang R, Ming P (2022) Modeling of polycrystalline material microstructure with 3D grain boundary based on Laguerre-Voronoi tessellation. Mater (Basel, Switzerland) 15(6):1996

    Article  Google Scholar 

  122. Lerski RA, Schad LR (1998) The use of reticulated foam in texture test objects for magnetic resonance imaging. Magn Reson Imaging 16:39–44

    Article  Google Scholar 

  123. Swider P, Conroy M, Pedrono A et al (2007) Use of high-resolution MRI for investigation of fluid flow and global permeability in a material with interconnected porosity. J Biomechanics 40:2112–2118

    Article  Google Scholar 

  124. Chen S, Doolen GS (1998) Lattice Boltzmann method for fluid flows. Ann Rev Fluid Mech 30:329–364

    Article  MathSciNet  Google Scholar 

  125. Manz B, Gladden LF, Warren PB (1999) Flow and dispersion in porous media: lattice-Boltzmann and NMR studies. Am Inst Chem Eng J 45:1845–1854

    Article  Google Scholar 

  126. Humby SJ, Biggs MJ, Tüzün U (2002) Explicit numerical simulation of fluids in reconstructed porous media. Chem Eng Sci 57(11):1955–1968

    Article  Google Scholar 

  127. Mohebi A, Fieguth P, Ioannidis MA (2009) Statistical fusion of two-scale images of porous media. Adv Water Resour 32:1567–1579

    Article  Google Scholar 

  128. Radon J (1917) Uber die bestimmung von funktionen durch ihre integralwerte langs gewisser mannigfaltigkeiten. Berichte uber die Verhandlungen Gesellshaft der Wissenschaften zu Leipzig. J Math Phys 69:262–277

    Google Scholar 

  129. Cormack AM (1963) Representation of a function by its line integrals, with some radiological applications. J Appl Phys 34:2722–2727

    Article  Google Scholar 

  130. Hounsfield GN (1973) Computerized transverse axial scanning (tomography) 1. Description of system. British J Radiol 46(552):1016–1022

    Article  Google Scholar 

  131. Maire E, Buffiere JY, Salvo L et al (2001) On the application of X-ray microtomography in the field of materials science. Adv Eng Mater 3(8):539–546

    Article  Google Scholar 

  132. Buffiere JY, Maire E, Cloetens P et al (1999) Characterization of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography. Acta Mater 47(5):1613–1625

    Article  Google Scholar 

  133. Maire E, Elmoutaouakkil A, Fazekas A, Salvo L (2003) In situ measurements of deformation and failure of metallic foams using X-ray tomography. MRS Bull 28:284

    Article  Google Scholar 

  134. Maire E, Fazekas A, Salvo L et al (2003) X-ray tomography applied to the characterization of cellular materials: related finite element modeling problems. Compos Sci Technol 63(16):2431–2443

    Article  Google Scholar 

  135. Bart-Smith H, Bastawros AF, Mumm DR et al (1998) Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping. Acta Mater 46:3583–3592

    Article  Google Scholar 

  136. Babout L, Mummery PM, Marrow TJ et al (2005) The effect of thermal oxidation on polycrystalline graphite studied by X-ray tomography. Carbon 43(4):765–774

    Article  Google Scholar 

  137. Elmoutaouakkail A, Salvo L, Maire E, Peix G (2002) 2D and 3D characterization of metal foams using X-ray tomography. Adv Eng Mater 4(10):803–807

    Article  Google Scholar 

  138. Ferrié E, Buffière JY, Ludwig W, Gravouil A, Lyndon E (2006) Fatigue crack propagation: in situ visualization using X-ray microtomography and 3D simulation using the extended finite element method. Acta Mater 54:1111–1122

    Article  Google Scholar 

  139. Lauridson E, Schmidt S, Nielsen S, Margulies L, Poulsen H, Jensen D (2006) Non-destructive characterization of recrystallization kinetics using three-dimensional X-ray diffraction microscopy. Scripta Mater 55:51–56

    Article  Google Scholar 

  140. Maire E, Wattebled F, Buffiere J, Peix G (2006) Deformation of a metallic foam studied by X-Ray computed tomography and finite element calculations. Microstruct Investig Anal 4:68–73

    Google Scholar 

  141. Sun YL, Lowe T, McDonald SA et al (2014) In situ investigation and image-based modelling of aluminium foam compression using micro X-Ray computed tomography. Vis Comput Sci Vis Imaging Syst 4:189–197

    Google Scholar 

  142. Youssef S, Maire E, Gaertner R (2005) Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. Acta Mater 53(3):719–730

    Article  Google Scholar 

  143. Sun Y, Li QM, Lowe T, McDonald SA, Withers PJ (2016) Investigation of strain-rate effect on the compressive behaviour of closed-cell aluminium foam by 3D image-based modelling. Mater Des 89:215–224

    Article  Google Scholar 

  144. Huang R, Li P, Liu T (2016) X-ray microtomography and finite element modelling of compressive failure mechanism in cenosphere epoxy syntactic foams. Compos Struct 140:157–165

    Article  Google Scholar 

  145. Jeon I, Asahina T, Kang K et al (2010) Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography. Mech Mater 42(3):227–236

    Article  Google Scholar 

  146. Daphalapurkar NP, Hanan JC, Phelps NB, Bale H, Lu H (2008) Tomography and simulation of microstructure evolution of a closed-cell polymer foam in compression. Mech Adv Mater Struct 15(8):594–611

    Article  Google Scholar 

  147. Kolluri M, Mukherjee M, Garcia-Moreno F, Banhart J, Ramamurty U (2008) Fatigue of a laterally constrained closed cell aluminum foam. Acta Mater 56:1114–1125

    Article  Google Scholar 

  148. Jang WY, Kyriakides S (2009) On the crushing of aluminum open-cell foams: Part I. Experiments. Int J Solids Struct 46:617–634

    Article  Google Scholar 

  149. Elliott JA, Windle AH, Hobdell JR et al (2002) In-situ deformation of an open-cell flexible polyurethane foam characterised by 3D computed microtomography. J Mater Sci 37:1547–1555

    Article  Google Scholar 

  150. Gurker N, Nell R, Seiler G, Wallner J (1999) A tunable focusing beamline for desktop x-ray microtomography. Rev Sci Instrum 70:2935–2949

    Article  Google Scholar 

  151. Takeuchi A, Uesugi K, Takano H, Suzuki Y (2002) Submicrometer-resolution three-dimensional imaging with hard x-ray imaging microtomography. Rev Sci Instrum 73:4246–4249

    Article  Google Scholar 

  152. Kinney J H, Bonse, U K, Johnson Q C et al. (1993): US patent 5245648.

  153. Stampanoni M, Borchert G, Abela R (2006) Progress in microtomography with the Bragg Magnifier at SLS. Radiat Phys Chem 75:1956–1961

    Article  Google Scholar 

  154. Stampanoni M, Borchert G, Abela R, Ruegsegger P (2002) Bragg magnifier: a detector for submicrometer x-ray computer tomography. J Appl Phys 92:7630–7635

    Article  Google Scholar 

  155. Stampanoni M, Borchert G, Abela R (2005) Towards nanotomography with asymmetrically cut crystals. Nucl Instrum Methods Phys Res, Sect A 551:119–124

    Article  Google Scholar 

  156. Stock SR, Ignatiev KI, Dahl T, Veis A et al (2003) Three-dimensional microarchitecture of the plates (primary, secondary, and carinar process) in the developing tooth of Lytechinus variegatus revealed by synchrotron X-ray absorption microtomography (microCT). J Struct Biol 144(3):282–300

    Article  Google Scholar 

  157. Ohgaki T, Toda H, Kobayashi M et al (2006) In situ observations of compressive behaviour of aluminium foams by local tomography using high-resolution X-rays. Philos Mag 86:4417–4438

    Article  Google Scholar 

  158. Sasov A (2004) Developments in X-ray tomography IV. SPIE 5535, Bellingham, WA

  159. Salvo L, Belestin P, Maire E et al (2004) Structure and mechanical properties of AFS sandwiches studied by in-situ compression tests in X-ray microtomography. Adv Eng Mater 6(6):411–415

    Article  Google Scholar 

  160. Ulrich D, Van Rietbergen B, Weinans H, Ruegsegger P (1998) Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech 31(12):1187–1192

    Article  Google Scholar 

  161. Roberts AP, Garboczi EJ (2000) Computation of the linear elastic properties of random porous materials with a wide variety of microstructure. Proc R Soc Lond A 458:1033–1054

    Article  MathSciNet  Google Scholar 

  162. Leblanc C, Kilingar NG, Jung A et al (2022) Analysis of an open foam generated from computerized tomography scans of physical foam samples. Int J Numer Methods Eng 123:4267–4295

    Article  MathSciNet  Google Scholar 

  163. Groeber MA, Haley BK, Uchic MD, Dimiduk DM, Ghosh S (2006) 3D reconstruction and characterization of polycrystalline microstructure using a FIB-SEM system. Mater Charact 57:259–273

    Article  Google Scholar 

  164. Sakamoto TST et al (1998) Development of an ion and electron dual focused beam apparatus for three-dimensional micro analysis. Jpn J Appl Phys 37:2051–2056

    Article  Google Scholar 

  165. Dunn DN, Hull R (1999) Reconstruction of three-dimensional chemistry and geometry using focused ion beam microscopy. Appl Phys Lett 75:3414–3416

    Article  Google Scholar 

  166. Phaneuf MW, Li J (2000) FIB techniques for analysis of metallurgical specimens. Microsc Microanal 6:524–525

    Article  Google Scholar 

  167. Inkson BJ, Steer T, Möbus G, Wagner T (2001) Subsurface nanoindentation deformation of Cu–Al multilayers mapped in 3D by focused ion beam microscopy. J Microsc 201:256–269

    Article  MathSciNet  Google Scholar 

  168. Inkson BJ, Mulvihill M, Möbus G (2001) 3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography. Scr Mater 45(7):753–758

    Article  Google Scholar 

  169. Lee E, Williams R, Viswanathan GB, Banerjee R, Fraser HL (2004) 3D materials characterization using dual-beam FIB/SEM techniques. Proc Microsc Microanal 10:1128–1129

    Article  Google Scholar 

  170. Williams R, Bhattacharyya D, Viswanathan GB, Banerjee R, Fraser HL (2004) Application of FIB-tomography to the study of microstructures in titanium alloys. Proc Microsc Microanal 10:1178–1179

    Article  Google Scholar 

  171. Claves SR, Bandar AR, Misiolek WZ, Michael JR (2004) Three-dimensional (3D) reconstruction of AlFeSi intermetallic particles in 6XXX aluminum alloys using focused ion beam. Proc Microsc Microanal 10:1138–1139

    Article  Google Scholar 

  172. Cheng Z, Sakamoto T, Takahashi, et al (1998) Development of ion and electron dual focused beam apparatus for high spatial resolution three-dimensional microanalysis of solid materials. J Vac Sci Technol B 16:2473–2478

    Article  Google Scholar 

  173. Bhandari Y, Sarkar S, Groeber M, Uchic M, Dimiduk D, Ghosh S (2007) 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis. Comput Mater Sci 41:222–235

    Article  Google Scholar 

  174. Sender LM, Escapa I, Benedetti A, Cúneo R, Diez JB (2018) Exploring the interior of cuticles and compressions of fossil plants by FIB-SEM milling and image microscopy. J Microsc 269(1):48–58

    Article  Google Scholar 

  175. Virnovsky GA, Lohne A, Frette OI (2009) Modeling capillary pressure using capillary bundles with arbitrary cross-sections obtained from photomicrographs. J Petrol Sci Eng 69:117–128

    Article  Google Scholar 

  176. Tsakiroglou CD, Ioannidis MA, Amirtharaj E et al (2009) A new approach for the characterization of the pore structure of dual porosity rocks. Chem Eng Sci 64(5):847–859

    Article  Google Scholar 

  177. Maruyama B, Spowart JE, Hooper DJ et al (2006) A new technique for obtaining three-dimensional structures in pitch-based carbon foams. Scr Mater 54:1709–1713

    Article  Google Scholar 

  178. Vogel HJ, Roth K (2001) Quantitative morphology and network representation of soil pore structure. Adv Water Resour 24:233–242

    Article  Google Scholar 

  179. Chen Y, Das R, Battley M (2015) Effects of cell size and cell wall thickness variations on the stiffness of closed-cell foams. Int J Solids Struct 52:150–164

    Article  Google Scholar 

  180. Andrews E, Sanders W, Gibson LJ (1999) Compressive and tensile behaviour of aluminum foams. Mater Sci Eng, A 270:113–124

    Article  Google Scholar 

  181. Maire E (2012) X-Ray tomography applied to the characterization of highly porous material. Annu Rev Mater Res 42:163–178

    Article  Google Scholar 

  182. Storm J, Abendroth M, Emmel M et al (2013) Geometrical modelling of foam structures using implicit functions. Int J Solids Struct 50:548–555. https://doi.org/10.1016/j.ijsolstr.2012.10.026

    Article  Google Scholar 

  183. Lautensack C, Zuyev S (2008) Random Laguerre tessellations. Adv Appl Probab 40:630–650. https://doi.org/10.1239/aap/1222868179

    Article  MathSciNet  Google Scholar 

  184. Habisreuther P, Djordjevic N, Zarzalis N (2009) Statistical distribution of residence time and tortuosity of flow through open-cell foams. Chem Eng Sci 64(23):4943–4954

    Article  Google Scholar 

  185. Jeulin D (2013) Random tessellations and Boolean random functions. In: Hendriks CLL, Borgefors G, Strand R (eds) Mathematical morphology and its applications to signal and image processing. Springer, Berlin, pp 25–36

    Chapter  Google Scholar 

  186. Teferra K, Graham-Brady L (2015) Tessellation growth models for polycrystalline microstructures. Comput Mater Sci 102:57–67

    Article  Google Scholar 

  187. Aurenhammer F (1987) A criterion for the affine equivalence of cell complexes in Rd and convex polyhedra in Rd+1. Discrete Comput Geom 2:49–64

    Article  MathSciNet  Google Scholar 

  188. Bellelli F (2022) The fascinating world of Voronoi diagrams. towardsdatascience.com. https://towardsdatascience.com/the-fascinating-world-of-voronoi-diagrams.

  189. Šedivý O, Brereton T, Westhoff D et al (2016) 3D reconstruction of grains in polycrystalline materials using a tessellation model with curved grain boundaries. Phil Mag 96:1926–1949. https://doi.org/10.1080/14786435.2016.1183829

    Article  Google Scholar 

  190. Scheike TH (1994) Anisotropic growth of Voronoi cells. Adv Appl Probab 26:43–53

    Article  MathSciNet  Google Scholar 

  191. Billia B, Jamgotchian H, Thi HN (1991) Statistical analysis of the disorder of two-dimensional cellular arrays in directional solidification. Metall Trans A 22:3041–3050

    Article  Google Scholar 

  192. Moukarzel C (1993) Voronoi foams. Physica A 199(1):19–30

    Article  Google Scholar 

  193. Boots B (1994) Visualizing spatial autocorrelation in point data. Geographical Systems 1:255–266

    Google Scholar 

  194. Gerstein M, Tsai J, Levitt M (1995) The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. J Mol Biol 249:955–966

    Article  Google Scholar 

  195. Jeon I, Asahina T (2005) The effect of structural defects on the compressive behavior of closed-cell Al foam. Acta Mater 53:3415–3423

    Article  Google Scholar 

  196. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng 135:416–442

    Google Scholar 

  197. Matzke EB, Nestler J (1946) Volume-shape relationships in variant foams. A further study of the role of surface forces in three-dimensional cell shape determination. Am J Botany 33(2):130–144

    Article  Google Scholar 

  198. Smith CS (1954) The shape of things. Sci Am 190:58–65

    Article  Google Scholar 

  199. Moukarzel C (1995) Morphological transitions in Laplacian growth with variable anisotropy. Physica A 218:249–270

    Article  Google Scholar 

  200. Fischer W, Koch E (1979) Geometrical packing analysis of molecular compounds. Zeitschrift fur Kristallographie - Crystalline Mater 150:245–260

    Article  MathSciNet  Google Scholar 

  201. Telly H, Liebling ThM, Mocellin A, Righetti F (1992) Simulating and modelling grain growth as the motion of a weighted Voronoi diagram. Mater Sci Forum 94–96:301–306

    Article  Google Scholar 

  202. Gellatly BJ, Finney JL (1982) Characterization of models of multicomponent amorphous metals: the radical alternative to the Voronoi polyhedron. J Non-Cryst Solids 50(3):313–329

    Article  Google Scholar 

  203. Gellatly BJ, Finney JL (1982) Calculation of protein volumes: an alternative to the Voronoi procedure. J Mol Biol 161(2):305–322

    Article  Google Scholar 

  204. Venema HW (1991) Determination of nearest neighbours in muscle fibre patterns using a generalized version of the Dirichlet tessellation. Pattern Recognit Lett 12(7):445–449

    Article  Google Scholar 

  205. Ogawa H, Wakai F, Waseda Y (1999) Molecular dynamics simulation of the model grain boundary structure of polycrystalline materials. Mol Simul 18:179–192

    Article  Google Scholar 

  206. Lautensack C, Sych T (2006) 3D Image analysis of open foams using random tessellations. Image Anal Stereol 25(2):87–93

    Article  Google Scholar 

  207. Osher O, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comp Phys 79:12–49

    Article  MathSciNet  Google Scholar 

  208. Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175

    Article  Google Scholar 

  209. Whitaker R T, Chen D T (1994) Embedded active surfaces for volume visualization. Proc SPIE 2167, Medical Imaging 1994: Image Processing. https://doi.org/10.1117/12.175068

  210. Whitaker RT (1995) Algorithms for implicit deformable models. Proceedings of IEEE International Conference on Computer Vision, Cambridge, USA, DOI: https://doi.org/10.1109/ICCV.1995.466853

  211. Osher S, Fedkiw RP (2000) Level set methods: an overview and some recent results. J Comput Phys 169(2):463–502

    Article  MathSciNet  Google Scholar 

  212. Alvarez L, Morel JM (1994) Morphological Approach to Multiscale Analysis: From Principles to Equations. In: ter Haar Romeny BM (ed) Geometry-driven diffusion in computer vision, computational imaging and vision, vol1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1699-4_10

    Chapter  Google Scholar 

  213. Caselles V, Kimmel R, Sapiro G (1995) Geodesic active contours. in Fifth Int. Conf. on Comp. Vision, pp. 694–699, IEEE, IEEE Computer Society Press

  214. Kimia BB, Zucker SW Exploring the shape manifold: the role of conservation laws. In: O Ying-Lie, A Toet, H Heijmans, DH Foster, and P Meer (eds). Shape in Picture: the mathematical description of shape in grey level images. Berlin: Springer-Verlag

  215. Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17:158–175. https://doi.org/10.1109/34.368173

    Article  Google Scholar 

  216. Whitaker RT, Breen DE (1998) Level-set models for the deformation of solid objects. Proceedings of the 3rd International Workshop on Implicit Surfaces, Eurographics Association, pp. 19–35.

  217. Whitaker RT (1998) A level-set approach to 3D reconstruction from range data. Int J Comput Vis 29:203–231

    Article  Google Scholar 

  218. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci USA 93(4):1591–1595

    Article  MathSciNet  Google Scholar 

  219. Kichenassamy S, Kumar A, Olver P et al (1995) Gradient flows and geometric active contour models. Proceedings of IEEE International Conference on Computer Vision, Cambridge, MA, USA, pp. 810–815. DOI: https://doi.org/10.1109/ICCV.1995.466855

  220. Yezzi A, Kichenassamy S, Kumar A et al (1997) A geometric snake model for segmentation of medical imagery. IEEE Trans Med Imaging 16:199–209

    Article  Google Scholar 

  221. Lorigo L, Faugeraus O, Grimson W, Keriven R, Kikinis R (1998) Segmentation of bone in clinical knee MRI using texture-based geodesic active contours. In: Wells WM, Colchester A, Delp S (eds) Medical image computing and computer-assisted intervention - MICCAI’98. Springer, Berlin, pp 1195–1204

    Google Scholar 

  222. Sethian JA (1999) Level set methods and fast marching methods, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  223. Sonon B, François B, Massart TJ (2012) A unified level set based methodology for fast generation of complex microstructural multi-phase RVEs. Comput Methods Appl Mech Eng 223–224:103–122. https://doi.org/10.1016/j.cma.2012.02.018

    Article  Google Scholar 

  224. Sonon B, François B, Massart TJ (2015) An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets. Comp Mech 56:221–242. https://doi.org/10.1007/s00466-015-1168-8

    Article  MathSciNet  Google Scholar 

  225. Ghazi A, Berke P et al (2019) Multiscale computational modelling of closed cell metallic foams with detailed microstructural morphological control. Int J Eng Sci 143:92–114

    Article  Google Scholar 

  226. Giorgi MD, Carofalo A, Dattoma V, Nobile R, Palano F (2010) Aluminium foams structural modelling. Comput Struct 88:25–35

    Article  Google Scholar 

  227. Kabir ME, Saha MC, Jeelani S (2006) Tensile and fracture behavior of polymer foams. Mater Sci Eng A 429:225–235

    Article  Google Scholar 

  228. Alison C (2012) Characterization of polymeric foam core materials. Master Thesis, The University of Auckland, New Zealand

  229. Colloca M, Dorogokupets G, Gupta N, Porfiri M (2012) Mechanical properties and failure mechanisms of closed-cell PVC foams. Int J Crashworth 17:327–336

    Article  Google Scholar 

  230. Fischer F, Lim GT, Handge UA, Altstädt V (2009) Numerical simulation of mechanical properties of cellular materials using computed tomography analysis. J Cell Plast 45:441–460

    Article  Google Scholar 

  231. Rakow JF, Waas AM (2005) Size effects and the shear response of aluminum foam. Mech Mater 37:69–82

    Article  Google Scholar 

Download references

Funding

The authors have no funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas K. Sahoo.

Ethics declarations

Conflict of interest

On behalf of the author and the corresponding author state that there is no conflict of interest.

Ethical Approval

The author declares that this article complies the ethical standard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, M.K., Mandal, A. Design and Analysis of Three-Dimensional Foams: A Review. Arch Computat Methods Eng 31, 2265–2293 (2024). https://doi.org/10.1007/s11831-023-10048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-10048-5

Navigation