Skip to main content
Log in

The P-DNS Method for Turbulent Fluid Flows: An Overview

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

An overview of the Pseudo-Direct Numerical Simulation (P-DNS) method is presented. This is a multi-scale method aiming at numerically solving the unknown fields at two different scales, namely coarse and fine. The P-DNS method is built around four key ideas. The first one is that of numerically solving both scales, which facilitates obtaining solutions to problems of both concurrent multi-scale and hierarchical multi-scale types. The second key idea is that of computing off-line the fine solution via Direct Numerical Simulation in simplified domains, termed representative volume elements (RVEs), while the third idea is that of storing the basic (physics-informed) results obtained from this solution in a problem-independent unique dimensionless database. This database may be subsequently used for solving different problems at the coarse level, i.e. by using coarse meshes in the corresponding problem domains, via a surrogate model. In this sense P-DNS resembles Reduced Order Methods, which require a previous off-line evaluation of the modes to be used in the solution, sharing with them the benefit of solving the reduced problem, more precisely the coarse scale, in P-DNS terms, in a very efficient way. The fourth and last key idea of P-DNS is based on the fact that most of the high-frequency modes of a turbulent flow are convected by the fluid velocity of the low-frequency modes. Taking this into account the P-DNS technique is implemented in such a way that the fine instabilities are convected by the velocity field of the coarse solution. Finally, although the P-DNS method has been used to solve different computational mechanics problems, such as convection-diffusion and convection-reaction/absorption problems, the scope of this overview will be limited to its application to turbulent incompressible fluid flows, including both single phase and particle-laden flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Notes

  1. Warning: the collocated finite volume guarantees divergence-free velocity fluxes on cell faces. In case of using the cell-centered fields, a correction of the component \({\text{G}_{\rm zz}^{\rm org}}\) must be done for it to have null trace.

References

  1. Orszag SA (1969) Numerical methods for the simulation of turbulence. Phys Fluids 12(12):II–250

  2. Siggia ED (1981) Numerical study of small-scale intermittency in three-dimensional turbulence. J Fluid Mech 107:375–406

    Article  ADS  CAS  Google Scholar 

  3. Kerr RM (1985) Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J Fluid Mech 153:31–58

    Article  ADS  Google Scholar 

  4. Vincent A, Meneguzzi M (1991) The spatial structure and statistical properties of homogeneous turbulence. J Fluid Mech 225:1–20

    Article  ADS  Google Scholar 

  5. Chen S, Doolen GD, Kraichnan RH, She Z-S (1993) On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence. Phys Fluids A 5(2):458–463

    Article  ADS  CAS  Google Scholar 

  6. Jiménez J, Wray AA, Saffman PG, Rogallo RS (1993) The structure of intense vorticity in isotropic turbulence. J Fluid Mech 255:65–90

    Article  ADS  MathSciNet  Google Scholar 

  7. Gotoh T, Fukayama D (2001) Pressure spectrum in homogeneous turbulence. Phys Rev Lett 86(17):3775

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Ishihara T, Kaneda Y (2003) High resolution DNS of incompressible homogeneous forced turbulence-time dependence of the statistics. In: Statistical theories and computational approaches to turbulence. Springer, Tokyo, pp 177–188

  9. Gotoh T, Fukayama D, Nakano T (2002) Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys Fluids 14(3):1065–1081

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Kaneda Y, Ishihara T (2006) High-resolution direct numerical simulation of turbulence. J Turbul. https://doi.org/10.1080/14685240500256099

    Article  Google Scholar 

  11. Okamoto N, Yoshimatsu K, Schneider K, Farge M, Kaneda Y (2007) Coherent vortices in high resolution direct numerical simulation of homogeneous isotropic turbulence: a wavelet viewpoint. Phys Fluids 19(11):115109

    Article  ADS  Google Scholar 

  12. Morozov A (2017) From chaos to order in active fluids. Science 355(6331):1262–1263

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Launder BE, Spalding DB (1983) The numerical computation of turbulent flows. In: Numerical prediction of flow, heat transfer, turbulence and combustion. Elsevier, Amsterdam, pp 96–116

  14. Speziale CG (1987) On nonlinear kl and k-ε models of turbulence. J Fluid Mech 178:459–475

    Article  ADS  CAS  Google Scholar 

  15. Rodi W (1976) A new algebraic relation for calculating the Reynolds stresses. In: Gesellschaft Angewandte Mathematik und Mechanik Workshop Paris France, vol 56

  16. Hellsten A (2005) New advanced k-omega turbulence model for high-lift aerodynamics. AIAA J 43(9):1857–1869

    Article  ADS  Google Scholar 

  17. Abdol-Hamid K (2018) Development and documentation of KL-based linear, nonlinear, and full Reynolds stress turbulence models. NASA Technical Memorandum, vol 2018-219820

  18. Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91(3):99–164

    Article  ADS  Google Scholar 

  19. Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large reynolds numbers. J Fluid Mech 41(2):453–480

    Article  ADS  Google Scholar 

  20. Meneveau C (2010) Turbulence: subgrid-scale modeling. Scholarpedia 5(1):9489

    Article  ADS  Google Scholar 

  21. Garnier E, Adams N, Sagaut P (2009) Large eddy simulation for compressible flows. Springer, Dordrecht

    Book  Google Scholar 

  22. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765

    Article  ADS  Google Scholar 

  23. Lilly DK (1992) A proposed modification of the germano subgrid-scale closure method. Phys Fluids A 4(3):633–635

    Article  ADS  MathSciNet  Google Scholar 

  24. Hughes TJ, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3(1–2):47–59

    Article  Google Scholar 

  25. Heinz S (2020) A review of hybrid RANS-LES methods for turbulent flows: concepts and applications. Prog Aerosp Sci 114:100597

    Article  Google Scholar 

  26. Menter F, Hüppe A, Matyushenko A, Kolmogorov D (2021) An overview of hybrid RANS-LES models developed for industrial CFD. Appl Sci 11(6):2459

    Article  CAS  Google Scholar 

  27. Spalart PR (2000) Strategies for turbulence modelling and simulations. Int J Heat Fluid Flow 21(3):252–263

    Article  Google Scholar 

  28. Strelets M (2001) Detached eddy simulation of massively separated flows. In: 39th Aerospace sciences meeting and exhibit, p 879

  29. Travin A, Shur M, Strelets M, Spalart P (2002) Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In: Advances in LES of complex flows: proceedings of the Euromech colloquium 412, held in Munich, Germany, 4–6 October 2000. Springer, Berlin, pp 239–254

  30. Menter F, Egorov Y (2010) The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow Turbul Combust 85(1):113–138

    Article  Google Scholar 

  31. Egorov Y, Menter F, Lechner R, Cokljat D (2010) The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: Application to complex flows. Flow Turbul Combust 85(1):139–165

    Article  Google Scholar 

  32. Girimaji SS (2005) Partially-averaged Navier–Stokes model for turbulence: a Reynolds-averaged Navier–Stokes to direct numerical simulation bridging method. J Appl Mech 73:413–421

    Article  Google Scholar 

  33. Shur ML, Spalart PR, Strelets MK, Travin AK (2008) A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int J Heat Fluid Flow 29(6):1638–1649

    Article  CAS  Google Scholar 

  34. Spalart PR, Deck S, Shur ML, Squires KD, Strelets MK, Travin A (2006) A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor Comput Fluid Dyn 20:181–195

    Article  Google Scholar 

  35. Shur ML, Spalart PR, Strelets MK, Travin AK (2015) An enhanced version of DES with rapid transition from RANS to LES in separated flows. Flow Turbul Combust 95:709–737

    Article  CAS  Google Scholar 

  36. Ghosh S (2015) Adaptive hierarchical-concurrent multiscale modeling of ductile failure in heterogeneous metallic materials. JOM 67:129–142

    Article  ADS  CAS  Google Scholar 

  37. Madej L, Mrozek A, Kus W, Burczynski T, Pietrzyk M (2018) Concurrent and upscaling methods in multiscale modelling, case studies. Comput Methods Mater Sci 8:1–15

    Google Scholar 

  38. Buxton ORH, Ganapathisubramani B (2014) Concurrent scale interactions in the far-field of a turbulent mixing layer. Phys Fluids 26(12):106–125

    Article  Google Scholar 

  39. Hughes TJ, Feijóo GR, Mazzei L, Quincy J-B (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166(1):3–24

    Article  ADS  MathSciNet  Google Scholar 

  40. Hughes TJR, Scovazzi G, Franca LP (2017) Multiscale and stabilized methods. American Cancer Society, Atlanta, pp 1–64

    Google Scholar 

  41. Codina R (2000) Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput Methods Appl Mech Eng 190:1579–1599

    Article  ADS  MathSciNet  Google Scholar 

  42. Bazilevs Y, Calo V, Cottrell J, Hughes T, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1):173–201

    Article  ADS  MathSciNet  Google Scholar 

  43. Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191:4295–4321

    Article  ADS  MathSciNet  Google Scholar 

  44. Koobus B, Farhat C (2004) A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes—application to vortex shedding. Comput Methods Appl Mech Eng 193(15):1367–1383

    Article  ADS  MathSciNet  Google Scholar 

  45. Masud A, Calderer R (2009) A variational multiscale stabilized formulation for the incompressible Navier–Stokes equations. Comput Mech 44:145–160

    Article  MathSciNet  Google Scholar 

  46. Brezzi F, Franca L, Hughes T, Russo A (1997) b = alpha g. Comput Methods Appl Mech Eng 145:329–339

    Article  ADS  Google Scholar 

  47. Rasthofer U, Gravemeier C (2018) Recent developments in variational multiscale methods for large-eddy simulation of turbulent flow. Arch Comput Methods Eng 25:647–690

    Article  MathSciNet  Google Scholar 

  48. Sánchez PJ, Blanco PJ, Huespe AE, Feijoo R (2013) Failure-oriented multi-scale variational formulation: micro-structures with nucleation and evolution of softening bands. Comput Methods Appl Mech Eng 257:221–247

    Article  ADS  MathSciNet  Google Scholar 

  49. Blanco PJ, Sánchez PJ, De Souza Neto EA, Feijóo RA (2016) The method of multiscale virtual power for the derivation of a second order mechanical model. Mech Mater 99:53–67

    Article  Google Scholar 

  50. Feyel J-LCF (2000) Fe2 multiscale approach for modelling the elasto-viscoplastic behaviour of long fiber SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330

    Article  ADS  Google Scholar 

  51. Spahn J, Andrä H, Kabel M, Müller R (2014) A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms. Comput Methods Appl Mech Eng 268:871–883

    Article  ADS  MathSciNet  Google Scholar 

  52. Fritzen MHF (2016) The finite element square reduced (Fe2R) method with GPU acceleration: towards three-dimensional two-scale simulations. Int J Numer Methods Eng 107:853–881

    Article  MathSciNet  Google Scholar 

  53. Idelsohn S, Nigro N, Larreteguy A, Gimenez JM, Ryzhakov P (2020) A pseudo-DNS method for the simulation of incompressible fluid flows with instabilities at different scales. Comput Part Mech 7:19–40

    Article  Google Scholar 

  54. Idelsohn S, Gimenez JM, Nigro N (2022) The pseudo-direct numerical simulation method considered as a reduced order model. Adv Model Simul Eng Sci 9:22

    Article  Google Scholar 

  55. Idelsohn SR, Gimenez JM, Nigro NM, Oñate E (2021) The pseudo-direct numerical simulation method for multi-scale problems in mechanics. Comput Methods Appl Mech Eng 380:113774

    Article  ADS  MathSciNet  Google Scholar 

  56. Gimenez JM, Idelsohn SR, Oñate E, Löhner R (2021) A multiscale approach for the numerical simulation of turbulent flows with droplets. Arch Comput Methods Eng 28(6):4185–4204

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  57. Idelsohn SR, Gimenez JM, Löhner R, Oñate E (2022) A multiscale approach for the study of particle-laden flows using a continuous model. Comput Methods Appl Mech Eng 401:115174

    Article  ADS  MathSciNet  Google Scholar 

  58. Larreteguy A, Gimenez JM, Nigro N, Sívori F, Idelsohn S (2022) A data-driven memory model for solving turbulent flows with the pseudo-direct numerical simulation method (P-DNS). Int J Numer Methods Fluids 95:44–80

    Article  Google Scholar 

  59. Gimenez J, Larreteguy A, Nigro N, Idelsohn S (2021) Pseudo-direct numerical simulation (P-DNS) database. Mendeley Data, V2

  60. Idelsohn S, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Meth Eng 61(7):964–984

    Article  MathSciNet  Google Scholar 

  61. Oñate E, Idelsohn S, Celigueta MA, Rossi R, Marti J, Carbonell JM, Ryzhakov P, Suárez B (2011) Advances in the particle finite element method (PFEM) for solving coupled problems in engineering. In: Particle-based methods. Springer, Dordrecht, pp 1–49

  62. Idelsohn S, Nigro N, Gimenez J, Rossi R, Marti J (2013) A fast and accurate method to solve the incompressible Navier–Stokes equations. Eng Comput 30(2):197–222

    Article  Google Scholar 

  63. Gimenez J, Nigro N, Idelsohn S (2014) Evaluating the performance of the particle finite element method in parallel architectures. Comput Part Mech 1(1):103–116

    Article  Google Scholar 

  64. Gimenez J (2015) Enlarging time-steps for solving one and two phase flows using the Particle Finite Element Method. PhD thesis, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Santa Fe, Argentina

  65. Gimenez JM, Nigro NM, Idelsohn SR, Oñate E (2016) Surface tension problems solved with the particle finite element method using large time-steps. Comput Fluids 141:90–104

    Article  MathSciNet  Google Scholar 

  66. Marti J, Ryzhakov P (2019) An explicit-implicit finite element model for the numerical solution of incompressible Navier–Stokes equations on moving grids. Comput Methods Appl Mech Eng 350:750–765

    Article  ADS  MathSciNet  Google Scholar 

  67. Gimenez JM, Aguerre HJ, Idelsohn SR, Nigro NM (2019) A second-order in time and space particle-based method to solve flow problems on arbitrary meshes. J Comput Phys 380:295–310

    Article  ADS  MathSciNet  Google Scholar 

  68. Tennekes H, Lumley J (1972) A first course in turbulences, vol 1. MIT, Cambridge

    Book  Google Scholar 

  69. Kim W-W, Menon S (1995) A new dynamic one-equation subgrid-scale model for large eddy simulations. In: 33rd Aerospace sciences meeting and exhibit

  70. Moody LF (1944) Friction factors for pipe flow. ASME Trans 66:671

    Google Scholar 

  71. Yang W, Zhang H, Chan C, Lin W (2004) Large eddy simulation of mixing layer. J Comput Appl Math 163(1):311–318

    Article  ADS  MathSciNet  Google Scholar 

  72. Oster D, Wygnanski I (1982) The forced mixing layer between parallel streams. J Fluid Mech 123:91–130

    Article  ADS  CAS  Google Scholar 

  73. Saad T, Cline D, Stoll R, Sutherland J (2016) Scalable tools for generating synthetic isotropic turbulence with arbitrary spectra. AIAA J 55:08

    Google Scholar 

  74. Wang Z, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh H, Kroll N, May G, Persson P, Leer B, Visbal M (2013) High-order CFD methods: current status and perspective. Int J Numer Meth Fluids 72(8):811–845

    Article  MathSciNet  Google Scholar 

  75. Jovic S, Driver DM (1994) Backward-facing step measurements at low Reynolds number, re (sub h)= 5000. Technical Report, NASA Ames Research Center, California, USA

  76. Le H, Moin P, Kim J (1997) Direct numerical simulation of turbulent flow over a backward-facing step. J Fluid Mech 330:349–374

    Article  ADS  CAS  Google Scholar 

  77. Klein M, Sadiki A, Janicka J (2003) A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys 186(2):652–665

    Article  ADS  Google Scholar 

  78. Trias F, Gorobets A, Oliva A (2015) Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study. Comput Fluids 123:87–98

    Article  MathSciNet  Google Scholar 

  79. Watson J (1958) A solution of the Navier–Stokes equations illustrating the response of a laminar boundary layer to a given change in the external stream velocity. Q J Mech Appl Math 11:302–325

    Article  MathSciNet  Google Scholar 

  80. Blasius H (1908) Grenzschichten in flüssigkeiten mit kleiner reibung. Zeits. Math. Phys. 56:1–37

    Google Scholar 

  81. Schlichting H (1955) Boundary layer theory. McGraw Hill, New York

    Google Scholar 

  82. Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Annu Rev Fluid Mech 42:111–133

    Article  ADS  Google Scholar 

  83. Crowe C (2000) On models for turbulence modulation in fluid particle flows. Int J Multiphys Flow 26:719–727

    Article  CAS  Google Scholar 

  84. Krampa F, Yerrumshetty A, Bergstrom D, Bugg J, Sanders R, Schaan J (2006) A study of turbulence modulation models for gas–particle flows. Turbul Heat Mass Transf 5:1

    Google Scholar 

  85. Tanaka T, Eaton J (2008) Classification of turbulence modification by dispersed spheres using a novel dimensionless number. Phys Rev Lett 101:114502

    Article  ADS  PubMed  Google Scholar 

  86. Saber A, Lundström T, Gunnar J (2015) Turbulent modulation in particulate flow: a review of critical variables. Engineering 07:597–609

    Article  CAS  Google Scholar 

  87. Gai G, Hadjadj A, Kudriakov S, Thomine O (2020) Particles-induced turbulence: a critical review of physical concepts, numerical modelings and experimental investigations. Theor Appl Mech Lett 10(4):241–248

    Article  Google Scholar 

  88. Luo K, Wang Z, Li D, Tan J, Fan J (2017) Fully resolved simulations of turbulence modulation by high-inertia particles in an isotropic turbulent flow. Phys Fluids 29(11):113301

    Article  ADS  Google Scholar 

  89. Rosa B, Pozorski J, Wang L (2020) Effects of turbulence modulation and gravity on particle collision statistics. Int J Multiph Flow 129:103334

    Article  MathSciNet  CAS  Google Scholar 

  90. Elghobashi S (2019) Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu Rev Fluid Mech 51(1):217–244

    Article  ADS  MathSciNet  Google Scholar 

  91. Sundaresan S (2000) Modeling the hydrodynamics of multiphase flow reactors: current status and challenges. AIChE J 46(6):1102–1105

    Article  ADS  CAS  Google Scholar 

  92. Luo KH, Xia J, Monaco E (2009) Multiscale modeling of multiphase-flow with complex interactions. J Multiscale Model 01(01):125–156

    Article  CAS  Google Scholar 

  93. Panda A, Patel H, Peters E, Baltussen M, Kuipers J (2020) A multiple resolution approach using adaptive grids for fully resolved boundary layers on deformable gas–liquid interfaces at high Schmidt numbers. Chem Eng Sci 227:115900

    Article  CAS  Google Scholar 

  94. Ebrahimi M, Crapper M (2017) CFD-DEM simulation of turbulence modulation in horizontal pneumatic conveying. Particuology 31:15–24

    Article  CAS  Google Scholar 

  95. Kuerten J, van der Geld C, Geurts B (2011) Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow. Phys Fluids 23(12):123301

    Article  ADS  Google Scholar 

  96. Putnam A (1961) Integrable form of droplet drag coefficient. ARS J 31:1467–68

    Google Scholar 

  97. Mei R (1992) An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Int J Multiph Flow 18(1):145–147

    Article  CAS  Google Scholar 

  98. Aguerre H (2018) Simulación de la inyección directa de combustible en motores de combustión interna. PhD thesis, Universidad Nacional del Litoral, Argentina, 03

  99. Aguerre HJ, Nigro NM (2019) Implementation and validation of a Lagrangian spray model using experimental data of the ECN spray G injector. Comput Fluids 190:30–48

    Article  MathSciNet  Google Scholar 

  100. Elgobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52:309–329

    Article  Google Scholar 

  101. Sato Y, Fukuichi U, Hishida K (2000) Effect of inter-particle spacing on turbulence modulation by Lagrangian PIV. Int J Heat Fluid Flow 21(5):554–561

    Article  Google Scholar 

  102. Ferziger JH, Peric M (2002) Computational methods for fluid dynamics. Springer, Berlin

    Book  Google Scholar 

  103. Abderrahmane A, Mohamed M, Noureddine A, Ganaoui ME, Pateyron B (2013) Ranz and Marshall correlations limits on heat flow between a sphere and its surrounding gas at high temperature. Therm Sci. https://doi.org/10.2298/TSCI120912090A

    Article  Google Scholar 

  104. Löhner R, Antil H, Idelsohn S, Oñate E (2020) Detailed simulation of viral propagation in the built environment. Comput Mech 66:1093–1107

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  105. Gimenez JM (2023) Multiscale simulation of powder coating sprays. J Comput Part Mech (under review, X)

Download references

Acknowledgements

The authors thank CONICET, Universidad Nacional del Litoral (UNL) and Universidad Argentina de la Empresa (UADE), Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (AGENCIA I+D+i) from Argentina, and Agencia Española de Investigación (AEI) for funding this research via projects PICT-2018-03106, PICT-2020-01601, CAI+D (UNL) 50620190100132LI, PID-UADE P19T02/P21T01/D21T01, and PARAFLUIDS, Ref. PID2019-104528RB-I00/AEI/10.13039/50 1100011033. The authors also acknowledge the financial support from the CERCA programme of the Generalitat de Catalunya, and from the Spanish Ministry of Economy and Competitiveness through the “Severo Ochoa Programme for Centres of Excellence in R &D” (CEX2018-000797-S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio R. Idelsohn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Computing the dimensionless parameters and obtaining the equilibrium stress tensor

Appendix 1: Computing the dimensionless parameters and obtaining the equilibrium stress tensor

  1. 1.

    Compute the velocity gradient \({\text{G}_{\rm ij}^{\rm org}} = \frac{\partial {u^c_{i}}}{\partial x_j}\) of the coarse velocity field \({\text{u}^{\rm c}_{\rm i}}\).Footnote 1

  2. 2.

    Obtain the transformation tensor \({S_{ij}}\) and the corresponding rotated velocity gradients \(g_{1}\) and \(g_{2}\) following the procedures in “The internal RVE case” section for an internal cell or in “The wall-RVE case” section in this appendix for a boundary cell.

  3. 3.

    Compute the dimensionless gradients on the rotated configuration as:

    $$\begin{aligned} Id_{1} = g_{1} \frac{\rho H^ 2}{\mu } \\ Id_{2} = g_{2} \frac{\rho H^ 2}{\mu } \end{aligned}$$
  4. 4.

    Enter the database with \(|Id_{1}|\) and \(|Id_{2}|\) (remember that the RVE simulations were computed for positive \(Id_i\) values) to obtain the dimensionless equilibrium fine stresses \({\widetilde{T}}_{ij}^{\rho}\).

  5. 5.

    Recover the correct sign of the off-diagonal components of \({\widetilde{T}}_{ij}^{\rho}\) by computing

    $$\begin{aligned} {\widetilde{T}}_{xy}^\rho := sign(Id_{1}) {\widetilde{T}}_{xy}^\rho , \\ {\widetilde{T}}_{xz}^\rho := sign(Id_{2}) {\widetilde{T}}_{xz}^\rho , \\ {\widetilde{T}}_{yz}^\rho := sign(Id_{2}){\widetilde{T}}_{yz}^\rho . \end{aligned}$$
  6. 6.

    Obtain the dimensional equilibrium stress tensor:

    $$\begin{aligned} {\overline{T}}_{ij}^\rho = {\widetilde{T}}_{ij}^{\rho} \frac{\mu^{2}}{\rho H^ 2}. \end{aligned}$$
  7. 7.

    Finally, transform the tensor back to the coarse mesh coordinates:

    $$\begin{aligned} {\overline{T}}_{ij}^\rho = S_{ik} {\overline{T}}_{kl}^\rho S_{jl}. \end{aligned}$$

1.1 The internal RVE case

Starting with a real, symmetric, null trace tensor

$$\begin{aligned} G_{ij}^{symm} = \left( \begin{matrix} g_{11} &{} g_{12} &{} g_{13} \\ g_{12} &{} g_{22} &{} g_{23} \\ g_{13} &{} g_{23} &{} -(g_{11}+g_{22}) \\ \end{matrix} \right) ,\end{aligned}$$
(96)

which is typical of the symmetric part of a velocity gradient, the idea is to obtain, by orthogonal transformations, a tensor

$$\begin{aligned} {G_{ij}^{rot}} = \left( \begin{matrix} 0 &{} g_{1} &{} g_{2} \\ g_{1} &{} 0 &{} g_{2} \\ g_{2} &{} g_{2} &{} 0 \\ \end{matrix} \right) , \end{aligned}$$
(97)

where \(|g_{1}|\ge |g_{2}|\). This can be achieved with the following procedure.

  1. (i)

    Rotate to the principal axes by computing

    $$\begin{aligned} V_{ik} G_{kl}^{symm} V_{jl} = \text{G}_{\rm ij}^{\sigma } = \left( \begin{matrix} \sigma_{1} &{} 0 &{} 0 \\ 0 &{} \sigma_{2} &{} 0 \\ 0 &{} 0 &{} \sigma_{3} \\ \end{matrix} \right) , \end{aligned}$$
    (98)

    where \(\sigma_i\) are the eigenvalues, with \(\sigma_{1}\le \sigma_{2} \le \sigma_3\), and where the rotation matrix \(V_{ij}\) is built from the corresponding eigenvectors.

  2. (ii)

    Reorder the eigenvalues to obtain the configuration of maximum energy, by defining

    $$\begin{aligned} {R^{0}_{ij}} = \left( \begin{matrix} \cos (\theta ) &{} 0 &{} \sin (\theta ) \\ 0 &{} 1 &{} 0 \\ -\sin (\theta ) &{} 0 &{} \cos (\theta ) \\ \end{matrix} \right) , \end{aligned}$$

    where \(\theta =90^{\circ}\) if \(({\sigma_{1}}{\sigma_{2}})<0\), \(\theta =0^{\circ}\) otherwise, and computing

    $$\begin{aligned} {R^{0}_{ik}} G_{kl}^{\sigma } {R^{0}_{jl}} = {\text{G}_{\rm ij}^{0}}. \end{aligned}$$
    (99)
  3. (iii)

    Rotate around first axis to make null a diagonal coefficient, by defining

    $$\begin{aligned} R^1_{ij} = \left( \begin{matrix} 1 &{} 0 &{} 0 \\ 0 &{} \cos (\theta ) &{} -\sin (\theta ) \\ 0 &{} \sin (\theta ) &{} \cos (\theta ) \\ \end{matrix} \right) , \end{aligned}$$

    where \(\theta =90^{\circ}\) if \(|{G_{22}^{0}} |<\varepsilon\), \(\theta =\tan^{-1}\left( \sqrt{{G_{11}^{0}}/{G_{22}^{0}} + 1}\right)\) otherwise, and computing

    $$\begin{aligned} R^1_{ik} G_{kl}^{0} R^1_{jl} = G_{ij}^{1}. \end{aligned}$$
    (100)
  4. (iv)

    Rotate around third axis to make null the remaining diagonal coefficients, by defining

    $$\begin{aligned} {R^{2}_{ij}} = \left( \begin{matrix} \cos (\theta ) &{} -\sin (\theta ) &{} 0\\ \sin (\theta ) &{} \cos (\theta ) &{} 0\\ 0 &{} 0 &{} 1 \\ \end{matrix} \right) , \end{aligned}$$

    where \(\theta^{0}=45^{\circ}\), and computing

    $$\begin{aligned} {R^{2}_{ik}} {G_{kl}^1} {R^{2}_{jl}} = {G_{ij}^{2}} \end{aligned}$$
    (101)
  5. (v)

    Rotate to obtain \(xy \ne xz\), by defining

    $$\begin{aligned} R^3_{ij} = \left( \begin{matrix} \cos (\theta ) &{} 0 &{} -\sin (\theta )\\ 0 &{} 1 &{} 0 \\ \sin (\theta ) &{} 0 &{} \cos (\theta )\\ \end{matrix} \right) , \end{aligned}$$

    where \(\theta^{0} = 90^{\circ}\) if \(|{G_{23}}^{2} |\ne |{G_{13}^{2}}|,\;{\theta} = 0^{\circ}\) otherwise, and computing

    $$\begin{aligned} R^3_{ik} G_{kl}^2 R^3_{jl} = G_{ij}^{3}. \end{aligned}$$
    (102)
  6. (vi)

    Rotate to obtain \(sign(xz) = sign(yz)\), by defining

    $$\begin{aligned} {R^{4}_{ij}} = \left( \begin{matrix} 1 &{} 0 &{} 0 \\ 0 &{} \cos (\theta ) &{} -\sin (\theta ) \\ 0 &{} \sin (\theta ) &{} \cos (\theta ) \\ \end{matrix} \right) , \end{aligned}$$

    where \(\theta^{0}=180^{\circ}\) if \(|{G_{23}}^{3}-{G_{13}^{3}} |> 0\), \(\theta =0^{\circ}\) otherwise, and computing

    $$\begin{aligned} {R^{4}_{ik}} G_{kl}^3 R^4_{jl} = G_{ij}^{4}. \end{aligned}$$
    (103)

Finally, by defining

$$\begin{aligned} {S_{ij}} = R^4_{ik} R^3_{kl} R^2_{lm} R^1_{mn} R^{0}_{np} V_{pj} \end{aligned}$$

the full transformation can be expressed as

$$\begin{aligned} {G_{ij}^{rot}} = S_{ik} G_{kl}^{symm} S_{jl} \end{aligned}$$
(104)

and the opposite transformation as

$$\begin{aligned} G_{ij}^{symm} = S_{ki} G_{kl}^{rot} S_{lj}. \end{aligned}$$
(105)

1.2 The wall-RVE case

In this case, the process starts with a real, null trace but not necessarily symmetric tensor

$$\begin{aligned} {G_{ij}^{org}} = \left( \begin{matrix} g_{11} &{} g_{12} &{} g_{13} \\ g_{21} &{} g_{22} &{} g_{23} \\ g_{33} &{} g_{32} &{} -(g_{11}+g_{22}) \\ \end{matrix} \right) , \end{aligned}$$
(106)

typical of a full velocity gradient, a unit vector \(n_{i}\) normal to the wall and a cell-centered velocity \(U_i\). The idea is to express \({G_{ij}^{org}}\) in a new local coordinate system, where the unit vectors \({\hat{i}}\), \({\hat{j}}\), \({\hat{k}}\) represent the axes, so that the wall normal is aligned with the \({\hat{j}}\) direction and the tangential velocity \({U_{i}^{\tau}} = U_{i} - (U_{j} n_{j}) n_{i}\) is aligned with the \({\hat{i}}\) direction (Fig. 37).

Fig. 37
figure 37

Procedure for elements on walls

  1. 1.

    Define the auxiliary variables as

    $$\begin{aligned} s= & {} n_{i} {\hat{j}}_i \\ m= & {} {\epsilon_{ijk}} {n_{j}} {\hat{j}}_k \end{aligned}$$

    where \({\epsilon_{ijk}}\) is the Levi–Civita tensor.

  2. 2.

    Rotate such as align boundary normal with y-direction

    $$\begin{aligned} R^1_{ij} = s {\delta_{ij}} + (1-s) m_im_j/\sqrt{m_km_k} + n_{i} {\hat{j}}_j - n_j {\hat{j}}_i \end{aligned}$$

    where \({\delta_{ij}}\) is the identity tensor and compute

    $$\begin{aligned} R^1_{ik} G_{kl}^{org} R^1_{jl} = G_{ij}^{1}. \end{aligned}$$
    (107)
  3. 3.

    Redefine the auxiliary variables as

    $$\begin{aligned} U^{\prime}_i= & {} R^1_{ij} U_j^\tau \\ s= & {} U^{\prime}_i{\hat{i}}_i \\ m= & {} {\epsilon_{ijk}} U^{\prime}_j{\hat{i}}_k \end{aligned}$$
  4. 4.

    Rotate such as align tangential velocity with x-direction

    $$\begin{aligned} R^2_{ij} = s {\delta_{ij}} + (1-s) m_im_j/\sqrt{m_km_k} + U^{\prime}_i {\hat{i}}_j - U^{\prime}_j {\hat{i}}_i \end{aligned}$$

    and compute

    $$\begin{aligned} R^2_{ik} G_{kl}^{1} R^2_{jl} = {G_{ij}^{rot}}. \end{aligned}$$
    (108)

Finally, by defining

$$\begin{aligned} {S_{ij}} = R^2_{ik} R^1_{kj} \end{aligned}$$

the full transformation can be expressed as

$$\begin{aligned} {G_{ij}^{rot}} = S_{ik} G_{kl}^{org} S_{jl} \end{aligned}$$
(109)

It is important to note that:

  • The resulting tensor \({G_{ij}^{rot}}\) is aligned with boundary normal and tangential velocities.

  • This tensor is expressed as

    $$\begin{aligned} {G_{ij}^{rot}} = \left( \begin{matrix} 0 &{} g_{1} &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ \end{matrix} \right) , \end{aligned}$$
    (110)

    only if the unique non-zero component of \({G_{ij}^{org}}\) is uv (with u aligned to the tangential velocity and v to the wall normal). If this is not the case, the other non-zero components are neglected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idelsohn, S.R., Gimenez, J.M., Larreteguy, A.E. et al. The P-DNS Method for Turbulent Fluid Flows: An Overview. Arch Computat Methods Eng 31, 973–1021 (2024). https://doi.org/10.1007/s11831-023-10004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-10004-3

Navigation