Skip to main content
Log in

Archives of Quantum Computing: Research Progress and Challenges

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Quantum computing is a revolutionary concept among emerging technologies visioned by researchers. The interdisciplinary nature of quantum computing evolves as cross-pollination of ideas, techniques, and methodologies. Henceforth, a comprehensive analysis of the literature is conducted to insight the progression of quantum computing research. Our study unfurls the intellectual landscape of major research domains in quantum computing including fiducial quantum state initialization, quantum superposition, quantum coherence, fault-tolerence and quantum algorithms. It assesses the prominence of the field through co-citation network analysis and burst reference analysis to unveil research trends that can be interweaved for the realization of quantum computers. The research findings reveal that photons, squids, nuclear magnetic resonance, semiconductor quantum dots, cryogenic temperatures, quantum machine learning, and support vector machines are the core research areas. Further, a meta-literature analysis of the research domain is carried out to extract the evolutionary pathways for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allende M et al (2023) Quantum-resistance in blockchain networks. Sci Rep 13:5664

    Google Scholar 

  2. DiVincenzo DP (2000) The physical implementation of quantum computation. Fortschritte der Physik: Progress of Phys 48:771–783

    Google Scholar 

  3. Hood W, Wilson C (2001) The literature of bibliometrics, scientometrics, and informetrics. Scientometrics 52:291–314

    Google Scholar 

  4. Meho LI, Rogers Y (2008) Citation counting, citation ranking, and h-index of human-computer interaction researchers: a comparison of scopus and web of science. J American Soc for Inform Sci Technol 59:1711–1726

    Google Scholar 

  5. Sood S, Rawat K, Sharma G (2022) 3-d printing technologies from infancy to recent times: a scientometric review. IEEE Trans Eng Manag. https://doi.org/10.1109/TEM.2021.3134128

  6. Neelam S, Sood SK (2020) A scientometric review of global research on smart disaster management. IEEE Trans Eng Manag 68:317–329

    Google Scholar 

  7. Song J, Zhang H, Dong W (2016) A review of emerging trends in global ppp research: analysis and visualization. Scientometrics 107:1111–1147

    Google Scholar 

  8. Saini K, Sood SK (2021) Exploring the emerging ict trends in seismic hazard by scientometric analysis during 2010–2019. Environ Earth Sci 80:1–25

    Google Scholar 

  9. Sood SK, Rawat KS, Kumar D (2022) Analytical mapping of information and communication technology in emerging infectious diseases using citespace. Telemat Inform 69:101796

    Google Scholar 

  10. Kaur A, Ten Sood SK (2020) years of disaster management and use of ict: a scientometric analysis. Earth Sci Inform 13:1–27

    Google Scholar 

  11. van Erp T, Gładysz B (2022) Quantum technologies in manufacturing systems: perspectives for application and sustainable development. Procedia CIRP 107:1120–1125

    Google Scholar 

  12. Bassman L et al (2021) Simulating quantum materials with digital quantum computers. Quantum Sci Technol 6:043002

    Google Scholar 

  13. Preskill J (2018) Quantum computing in the nisq era and beyond. Quantum 2:79

    Google Scholar 

  14. Lo S-C, Shih Y-C (2021) A genetic algorithm with quantum random number generator for solving the pollution-routing problem in sustainable logistics management. Sustainability 13:8381

    Google Scholar 

  15. Edwards M, Mashatan A, Ghose S (2020) A review of quantum and hybrid quantum/classical blockchain protocols. Quantum Information Processing 19:1–22

    MathSciNet  Google Scholar 

  16. Scheidsteger T, Haunschild R, Bornmann L, Ettl C (2021) Bibliometric analysis in the field of quantum technology. Quantum Rep 3:549–575

    Google Scholar 

  17. Sharma N, Ketti Ramachandran R (2021) The emerging trends of quantum computing towards data security and key management. Archiv Comput Methods Eng 1:14

    MathSciNet  Google Scholar 

  18. Singh J, Bhangu KS (2023) Contemporary quantum computing use cases: Taxonomy, review and challenges. Arch Comput Methods Eng 30:615–638

    Google Scholar 

  19. Coccia M, Roshani S, Mosleh M (2022) Evolution of quantum computing: theoretical and innovation management implications for emerging quantum industry. IEEE Trans Eng Manag. https://doi.org/10.1109/TEM.2022.3175633

  20. Zhao L, Tang Z-Y, Zou X (2019) Mapping the knowledge domain of smart-city research: A bibliometric and scientometric analysis. Sustainability 11:6648

    Google Scholar 

  21. Sood SK, Rawat KS (2021) A scientometric analysis of ict-assisted disaster management. Natural hazards 106:2863–2881

    Google Scholar 

  22. Arute F et al (2019) Quantum supremacy using a programmable superconducting processor. Nature 574:505–510

    Google Scholar 

  23. Kjaergaard M et al (2020) Superconducting qubits: current state of play. Annual Rev Condensed Matter Phys 11:369–395

    Google Scholar 

  24. Gu X et al (2021) Fast multiqubit gates through simultaneous two-qubit gates. PRX Quantum 2:040348

    Google Scholar 

  25. Kandala A et al (2017) Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549:242–246

    Google Scholar 

  26. Barends R et al (2014) Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508:500–503

    Google Scholar 

  27. Barends R et al (2013) Coherent josephson qubit suitable for scalable quantum integrated circuits. Phys rev lett 111:080502

    Google Scholar 

  28. Monz T et al (2011) 14-qubit entanglement: Creation and coherence. Phys Rev Lett 106:130506

    Google Scholar 

  29. Ladd T et al (2010) Quantum computer. Nature 464:45–53

    Google Scholar 

  30. Browne DE, Rudolph T (2005) Resource-efficient linear optical quantum computation. Phys Rev Lett 95:010501

    Google Scholar 

  31. Grover LK (1997) Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett 79:325

    Google Scholar 

  32. Brown K, Lidar D, Whaley K (2001) Quantum computing with quantum dots on quantum linear supports. Phys Rev A 65:012307

    Google Scholar 

  33. Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028

  34. Ajagekar A, You F (2019) Quantum computing for energy systems optimization: challenges and opportunities. Energy 179:76–89

    Google Scholar 

  35. Neukart F, Dollen DV, Seidel C (2018) Quantum-assisted cluster analysis on a quantum annealing device. Front Phys 6:55

    Google Scholar 

  36. Watson T et al (2018) A programmable two-qubit quantum processor in silicon. Nature 555:633–637

    Google Scholar 

  37. Yoneda J et al (2018) A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat nanotechnol 13:102–106

    Google Scholar 

  38. Yang CH et al (2020) Operation of a silicon quantum processor unit cell above one kelvin. Nature 580:350–354

    Google Scholar 

  39. Guo X et al (2020) Distributed quantum sensing in a continuous-variable entangled network. Nat Phys 16:281–284

    Google Scholar 

  40. Raussendorf R, Browne DE, Briegel HJ (2003) Measurement-based quantum computation on cluster states. Phys rev A 68:022312

    Google Scholar 

  41. Mourik V et al (2012) Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336:1003–1007

    Google Scholar 

  42. Hasan M, Kane C (2010) Colloquium: topological insulators. Phys rev lett 82:3045

    Google Scholar 

  43. Nielsen MA, Chuang I (2002) Quantum computation and quantum information

  44. Liu C et al (2020) Zero-energy bound states in the high-temperature superconductors at the two-dimensional limit. Sci adv 6:eaax7547

    Google Scholar 

  45. Fu L, Kane CL (2008) Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys rev lett 100:096407

    Google Scholar 

  46. Hornibrook J et al (2015) Cryogenic control architecture for large-scale quantum computing. Phys Rev Appl 3:024010

    Google Scholar 

  47. Charbon E, et al (2016) Cryo-cmos for quantum computing. In 2016 IEEE International Electron Devices Meeting (IEDM), 13–5 IEEE

  48. Sood V, Chauhan RP (2023) Towards quantum state preparation with materials science: an analytical review. Int J Quantum Chem e27148. https://doi.org/10.1002/qua.27148

  49. Weber J et al (2010) Quantum computing with defects. Proceedings of the National Academy Sci 107:8513–8518

    Google Scholar 

  50. Parthasarathy SK et al (2023) Scalable quantum memory nodes using nuclear spins in silicon carbide. Phys Rev Appl 19:034026

    Google Scholar 

  51. Glaser NJ, Roy F, Filipp S (2023) Controlled-controlled-phase gates for superconducting qubits mediated by a shared tunable coupler. Phys Rev Appl 19:044001

    Google Scholar 

  52. Ahmad HG et al (2023) Investigating the individual performances of coupled superconducting transmon qubits. Condensed Matter 8:29

    Google Scholar 

  53. Sung KJ, Rančić MJ, Lanes OT, Bronn NT (2023) Simulating majorana zero modes on a noisy quantum processor. Quantum Sci Technol 8:025010

    Google Scholar 

  54. Kang M, Liang Q, Li M, Nam Y (2022) Efficient motional-mode characterization for high-fidelity trapped-ion quantum computing. arXiv preprint arXiv:2206.04212

  55. Liu Y-L et al (2023) Fast conversion of three-particle dicke states to four-particle dicke states with rydberg superatoms. Adv Quantum Technol 2200173. https://doi.org/10.1002/qute.202200173

  56. Kim K, Ahn J (2023) Quantum tomography of rydberg atom graphs by configurable ancillas. PRX Quantum 4:020316

    Google Scholar 

  57. Plesch M, Brukner Č (2011) Quantum-state preparation with universal gate decompositions. Phys Rev A 83:032302

    Google Scholar 

  58. Ghasemian E (2023) Dissipative quantum computation and quantum state preparation based on bec qubits. JOSA B 40:247–259

    Google Scholar 

  59. Li C-L et al (2023) All-photonic quantum repeater for multipartite entanglement generation. Optics Lett 48:1244–1247

    Google Scholar 

  60. Liu S-C, Cheng L, Yao G-Z, Wang Y-X, Peng L-Y (2023) Efficient numerical approach to high-fidelity phase-modulated gates in long chains of trapped ions. Phys Rev E 107:035304

    Google Scholar 

  61. Liao M-J et al (2023) Generation of triple-entanglement in second-order optical topological kagome structure. JOSA B 40:912–921

    Google Scholar 

  62. Dong M, et al (2023) Programmable photonic integrated meshes for modular generation of optical entanglement links. npj Quantum Information 9, 42

  63. Sakhouf H, Daoud M, Laamara RA (2023) Quantum process tomography of the single-shot entangling gate with superconducting qubits. J Phys B: Atomic, Mol Optical Phys 56:105501

    Google Scholar 

  64. Vesperini A, Bel-Hadj-Aissa G, Franzosi R (2023) Entanglement and quantum correlation measures for quantum multipartite mixed states. Sci Rep 13:2852

    Google Scholar 

  65. Cortés-Vega J, Barra J, Pereira L, Delgado A (2023) Detecting entanglement of unknown states by violating the clauser-horne-shimony-holt inequality. Quantum Inform Process 22:1–24

    MathSciNet  Google Scholar 

  66. Xu H, Kee H-Y (2023) Creating long-range entangled majorana pairs: From spin-1 2 twisted kitaev to generalized x y chains. Phys Rev B 107:134435

    Google Scholar 

  67. Bostelmann M, Wilksen S, Lohof F, Gies C (2023) Multipartite-entanglement generation in coupled microcavity arrays. Phys Rev A 107:032417

    Google Scholar 

  68. Niu J et al (2023) Low-loss interconnects for modular superconducting quantum processors. Nat Electronics 6:235–241

    Google Scholar 

  69. Yang H, Kim NY (2023) Material-inherent noise sources in quantum information architecture. Materials 16:2561

    Google Scholar 

  70. Ripper P, Amaral G, Temporão G (2023) Swap test-based characterization of decoherence in universal quantum computers. Quantum Inform Process 22:1–14

    MathSciNet  Google Scholar 

  71. Miller JH, Villagrán MYS, Sanderson JO, Wosik J (2023) Hybrid quantum systems for higher temperature quantum information processing. IEEE Trans Appl Superconduct 33:1–4

    Google Scholar 

  72. Espinós H, Panadero I, García-Ripoll JJ, Torrontegui E (2023) Quantum control of tunable-coupling transmons using dynamical invariants of motion. Quantum Sci Technol 8:025017

    Google Scholar 

  73. Asanovski R et al (2023) Understanding the excess 1/f noise in mosfets at cryogenic temperatures. IEEE Trans Electron Dev 70:2135

    Google Scholar 

  74. You Y, Ding Z, Zhang Y (2023) Scalable quantum computation based on nitrogen-vacancy centers in decoherence-free subspace. Int J Quantum Inform 21:2350007

    Google Scholar 

  75. Feng M et al (2023) Control of dephasing in spin qubits during coherent transport in silicon. Phys Rev B 107:085427

    Google Scholar 

  76. Liu Y et al (2023) Quantitative assessment and suppression of anharmonic potential of quadrupole linear radiofrequency ion traps with round electrodes. Phys Rev B 485:116997

    Google Scholar 

  77. Shafraniuk S (2023) Tunable spectral narrowing enabling the functionality of graphene qubit circuits at room temperature. Phys Rev B 107:045415

    Google Scholar 

  78. Irländer K, Schnack J (2023) Studies of decoherence in strongly anisotropic spin triangles with toroidal or general noncollinear easy axes. Phys Rev Res 5:013192

    Google Scholar 

  79. Chen L et al (2023) Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier. npj Quantum Inform 9:26

    Google Scholar 

  80. Akhtar M et al (2023) A high-fidelity quantum matter-link between ion-trap microchip modules. Nat Commun 14:531

    Google Scholar 

  81. Nakav H, Finkelstein R, Peleg L, Akerman N, Ozeri R (2023) Effect of fast noise on the fidelity of trapped-ion quantum gates. Phys Rev A 107:042622

    Google Scholar 

  82. Cai R, Žutić I, Han W (2023) Superconductor/ferromagnet heterostructures: a platform for superconducting spintronics and quantum computation. Adv Quantum Technol 6:2200080

    Google Scholar 

  83. Heußen S et al (2023) Strategies for a practical advantage of fault-tolerant circuit design in noisy trapped-ion quantum computers. Phys Rev A 107:042422

    Google Scholar 

  84. Google Quantum AI (2023) Suppressing quantum errors by scaling a surface code logical qubit. Nature 614:676–681. https://doi.org/10.1038/s41586-022-05434-1

  85. Cenedese G, Benenti G, Bondani M (2023) Correcting coherent errors by random operation on actual quantum hardware. Entropy 25:324

    MathSciNet  Google Scholar 

  86. Bargerbos A et al (2023) Mitigation of quasiparticle loss in superconducting qubits by phonon scattering. Phys Rev Appl 19:024014

    Google Scholar 

  87. Liao W, Suzuki Y, Tanimoto T, Ueno Y, Tokunaga Y (2023) Wit-greedy: hardware system design of weighted iterative greedy decoder for surface code. In: Proceedings of the 28th Asia and South Pacific Design Automation Conference, pp. 209–215. https://doi.org/10.1145/3566097.3567933

  88. Zhao L-Y, Chen X-B, Xu G, Zhang J-W, Yang Y-X (2023) Fault-tolerant error correction for quantum hamming codes with only two ancillary qudits. Quantum Information Processing 22:70

    MathSciNet  Google Scholar 

  89. Lee S-H, Omkar S, Teo YS, Jeong H (2023) Parity-encoding-based quantum computing with bayesian error tracking. npj Quantum Information. 9:39

    Google Scholar 

  90. Weinberg SJ, Sanches F, Ide T, Kamiya K, Correll R (2023) Supply chain logistics with quantum and classical annealing algorithms. Sci Rep 13:4770

    Google Scholar 

  91. Le NH, Cykiert M, Ginossar E (2023) Scalable and robust quantum computing on qubit arrays with fixed coupling. npj Quantum Information. 9:1

    Google Scholar 

  92. Mineh L, Montanaro A (2023) Accelerating the variational quantum eigensolver using parallelism. Quant Sci Technol 8:035012

    Google Scholar 

  93. Acampora G, Chiatto A, Vitiello A (2023) Genetic algorithms as classical optimizer for the quantum approximate optimization algorithm. Appl Soft Comput 142:110296

    Google Scholar 

  94. Pelofske E, Hahn G, Djidjev HN (2023) Noise dynamics of quantum annealers: estimating the effective noise using idle qubits. Quantum Sci Technol 8:035005

    Google Scholar 

  95. Pelofske E, Hahn G, Djidjev HN (2023) Solving larger maximum clique problems using parallel quantum annealing. Quantum Information Processing 22:219

    MathSciNet  Google Scholar 

  96. Cheng X et al (2023) Optimization of the transmission cost of distributed quantum circuits based on merged transfer. Quantum Information Processing 22:187

    MathSciNet  Google Scholar 

  97. Shi J, Wang W, Lou X, Zhang S, Li, X (2022) Parameterized hamiltonian learning with quantum circuit. IEEE Transactions on Pattern Analysis and Machine Intelligence

  98. Jun K, Lee H (2023) Hubo formulations for solving the eigenvalue problem. Results in Control and Optimization 11:100222

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaishali Sood.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sood, V., Chauhan, R.P. Archives of Quantum Computing: Research Progress and Challenges. Arch Computat Methods Eng 31, 73–91 (2024). https://doi.org/10.1007/s11831-023-09973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09973-2

Navigation