Skip to main content

Advertisement

Log in

Role of Machine Learning in Additive Manufacturing of Titanium Alloys—A Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Due to their exceptional properties, titanium alloys are ideal for many technologically demanding applications, including aerospace, automotive, marine, military, sports, and biomedical. The increasing demand for these metals to be formed into intricate shapes necessitates the use of additive manufacturing. Additive manufacturing technology has the potential to offer extremely low-cost manufacturing with a high material utilization ratio, particularly for titanium components with more complicated shapes. The complexity and high-quality manufacture of titanium alloys, which demands a wide range of design concepts, mechanical properties, standardization, and quality control, pose significant problems for additive manufacturing. These are difficult to investigate and evaluate using statistical techniques. Machine learning can greatly improve the accuracy of modelling nonlinearities and the evaluation of the effect of various input parameters on material performance. Further, machine learning has been recognized as a reliable prediction tool for data-driven multi-physical modelling, capable of producing accurate results and examining system parameters beyond the scope of conventional computational and experimental investigation. Numerous studies have reported the use of machine learning algorithms, such as artificial neural network (ANN), support vector machine (SVM), convolutional neural network (CNN), decision tree (DT), k-nearest neighbor (KNN), k-means clustering, random forest (RF), Bayesian networks, self-organizing maps (SOM), and Gaussian process regression (GPR) in the design, fabrication, development, and quality control of titanium components via additive manufacturing. This review study consolidates the relevant literature and illustrates the applicability of machine learning approaches in modelling of titanium alloy additive manufacturing. Based on this literature review, a few recommendations for analyzing machine learning methods for modelling various additive manufacturing process parameters are presented, along with some insightful thoughts on prospective future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Murr LE, Martinez E, Amato KN, Gaytan SM, Hernandez J, Ramirez DA, Shindo PW, Medina F, Wicker RB (2012) Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science. J Mater Res Technol 1:42–54. https://doi.org/10.1016/S2238-7854(12)70009-1

    Article  Google Scholar 

  2. Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37:1079–1104. https://doi.org/10.1016/j.progpolymsci.2011.11.007

    Article  Google Scholar 

  3. Campbell I, Bourell D, Gibson I (2012) Additive manufacturing: rapid prototyping comes of age. Rapid Prototyp J 18:255–258. https://doi.org/10.1108/13552541211231563

    Article  Google Scholar 

  4. Galante R, Figueiredo-Pina CG, Serro AP (2019) Additive manufacturing of ceramics for dental applications: a review. Dent Mater 35:825–846. https://doi.org/10.1016/j.dental.2019.02.026

    Article  Google Scholar 

  5. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89. https://doi.org/10.1016/j.cad.2015.04.001

    Article  Google Scholar 

  6. Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Annals - Manuf Technol 65:737–760. https://doi.org/10.1016/j.cirp.2016.05.004

    Article  Google Scholar 

  7. Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67:1191–1203. https://doi.org/10.1007/s00170-012-4558-5

    Article  Google Scholar 

  8. Zhai Y, Lados DA, Lagoy JL (2014) Additive manufacturing: making imagination the major limitation. Jom 66:808–816. https://doi.org/10.1007/s11837-014-0886-2

    Article  Google Scholar 

  9. Schwentenwein M, Homa J (2015) Additive manufacturing of dense alumina ceramics. Int J Appl Ceram Technol 12:1–7. https://doi.org/10.1111/ijac.12319

    Article  Google Scholar 

  10. Campoli G, Borleffs MS, Amin Yavari S, Wauthle R, Weinans H, Zadpoor AA (2013) Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater Des 49:957–965. https://doi.org/10.1016/j.matdes.2013.01.071

    Article  Google Scholar 

  11. Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S (2014) Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos Sci Technol 105:144–150. https://doi.org/10.1016/j.compscitech.2014.10.009

    Article  Google Scholar 

  12. Wang X, Gong X, Chou K (2017) Review on powder-bed laser additive manufacturing of Inconel 718 parts. Proc Inst Mech Eng Part B: J Eng Manuf 231:1890–1903. https://doi.org/10.1177/0954405415619883

    Article  Google Scholar 

  13. Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R (2019) 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci 106:100578. https://doi.org/10.1016/j.pmatsci.2019.100578

    Article  Google Scholar 

  14. Shen C, Pan Z, Ma Y, Cuiuri D, Li H (2015) Fabrication of iron-rich Fe-Al intermetallics using the wire-arc additive manufacturing process. Additive Manuf 7:20–26. https://doi.org/10.1016/j.addma.2015.06.001

    Article  Google Scholar 

  15. Yakout M, Cadamuro A, Elbestawi MA, Veldhuis SC (2017) The selection of process parameters in additive manufacturing for aerospace alloys. Int J Adv Manuf Technol 92:2081–2098. https://doi.org/10.1007/s00170-017-0280-7

    Article  Google Scholar 

  16. Wu AS, Brown DW, Kumar M, Gallegos GF, King WE (2014) An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel. Metall Mater Trans A 45:6260–6270. https://doi.org/10.1007/s11661-014-2549-x

    Article  Google Scholar 

  17. Popovich A, Sufiiarov V, Polozov I, Borisov E, Masaylo D, Orlov A (2016) Microstructure and mechanical properties of additive manufactured copper alloy. Mater Lett 179:38–41. https://doi.org/10.1016/j.matlet.2016.05.064

    Article  Google Scholar 

  18. B. Dutta, F.H. Froes, Chapter 1 - The Additive Manufacturing of Titanium Alloys, Editor(s): B. Dutta, F.H. Froes, Additive Manufacturing of Titanium Alloys, Butterworth-Heinemann, (2016) 1-10. https://doi.org/10.1016/b978-0-12-804782-8.00001-x

  19. Trevisan F, Calignano F, Aversa A, Marchese G, Lombardi M, Biamino S, Ugues D, Manfredi D (2018) Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater 16:57–67. https://doi.org/10.5301/jabfm.5000371

    Article  Google Scholar 

  20. Zhang LC, Chen LY, A Review on Biomedical Titanium Alloys (2019) Recent progress and prospect. Adv Eng Mater 21:1–29. https://doi.org/10.1002/adem.201801215

    Article  Google Scholar 

  21. Zhang LC, Liu Y, Li S, Hao Y (2018) Additive manufacturing of titanium alloys by electron beam melting: a review. Adv Eng Mater 20:1–16. https://doi.org/10.1002/adem.201700842

    Article  Google Scholar 

  22. Chowdhury S, Anand S (2016) Artificial neural network based geometric compensation for thermal deformation in additive manufacturing processes. ASME 2016 11th Int Manuf Sci Eng Conf MSEC 2016 3:1–10. https://doi.org/10.1115/MSEC20168784

    Article  Google Scholar 

  23. Barrios JM, Romero PE (2019) P.E, Decision Tree Methods for Predicting Surface Roughness in Fused Deposition Modeling Parts, Materials, 12 https://doi.org/10.3390/ma12162574

  24. Song L, Huang W, Han X, Mazumder J (2017) Real-time composition monitoring using support Vector Regression of Laser-Induced plasma for laser Additive Manufacturing. IEEE Trans Industr Electron 64:633–642. https://doi.org/10.1109/TIE.2016.2608318

    Article  Google Scholar 

  25. Wang Y, Blache R, Zheng P, Xu X (2018) A knowledge management system to support design for additive manufacturing using bayesian networks. J Mech Des Trans ASME 10(1115/1):4039201

    Google Scholar 

  26. Zhao Z, Guo Y, Bai L, Wang K, Han J (2019) Quality monitoring in wire-arc additive manufacturing based on cooperative awareness of spectrum and vision. Optik 181:351–360. https://doi.org/10.1016/j.ijleo.2018.12.071

    Article  Google Scholar 

  27. Vaissier B, Pernot JP, Chougrani L, Véron P (2019) Genetic-algorithm based framework for lattice support structure optimization in additive manufacturing. Comput Aided Des 110:11–23. https://doi.org/10.1016/j.cad.2018.12.007

    Article  Google Scholar 

  28. Zhu Z, Anwer N, Huang Q, Mathieu L (2018) Machine learning in tolerancing for additive manufacturing. CIRP Ann 67:157–160. https://doi.org/10.1016/j.cirp.2018.04.119

    Article  Google Scholar 

  29. Li Z, Zhang Z, Shi J, Wu D (2019) Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot Comput Integr Manuf 57:488–495. https://doi.org/10.1016/j.rcim.2019.01.004

    Article  Google Scholar 

  30. Gobert C, Reutzel EW, Petrich J, Nassar AR, Phoha S (2018) Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Additive Manuf 21:517–528. https://doi.org/10.1016/j.addma.2018.04.005

    Article  Google Scholar 

  31. Paul A, Mozaffar M, Yang Z, Liao WK, Choudhary A, Cao J, Agrawal A (2019) A real-time iterative machine learning approach for temperature profile prediction in additive manufacturing processes, Proceedings – 2019 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2019. 541–550.

  32. Ren K, Chew Y, Zhang YF, Fuh JYH, Bi GJ (2020) Thermal field prediction for laser scanning paths in laser aided additive manufacturing by physics-based machine learning. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2019.112734

    Article  Google Scholar 

  33. Yang Y, He M, Li L (2020) Power consumption estimation for mask image projection stereolithography additive manufacturing using machine learning based approach. J Clean Prod 251:119710. https://doi.org/10.1016/j.jclepro.2019.119710

    Article  Google Scholar 

  34. Chan SL, Lu Y, Wang Y (2018) Data-driven cost estimation for additive manufacturing in cybermanufacturing. J Manuf Syst 46:115–126. https://doi.org/10.1016/j.jmsy.2017.12.001

    Article  Google Scholar 

  35. Baturynska I (2019) Application of machine learning techniques to predict the mechanical properties of polyamide 2200 (PA12) in additive manufacturing. Appl Sci (Switzerland). https://doi.org/10.3390/app9061060

    Article  Google Scholar 

  36. Mycroft W, Katzman M, Tammas-Williams S, Hernandez-Nava E, Panoutsos G, Todd I, Kadirkamanathan V (2020) A data-driven approach for predicting printability in metal additive manufacturing processes. J Intell Manuf 31:1769–1781. https://doi.org/10.1007/s10845-020-01541-w

    Article  Google Scholar 

  37. Scime L, Beuth J (2018) Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Additive Manuf 19:114–126. https://doi.org/10.1016/j.addma.2017.11.009

    Article  Google Scholar 

  38. Masinelli G, Shevchik SA, Pandiyan V, Quang-Le T, Wasmer K (2021) Artificial Intelligence for Monitoring and Control of Metal Additive Manufacturing. Industrializing Additive Manufacturing. Springer International Publishing, Cham, pp 205–220. https://doi.org/10.1007/978-3-030-54334-1_15

    Chapter  Google Scholar 

  39. Li X, Jia X, Yang Q, Lee J (2020) Quality analysis in metal additive manufacturing with deep learning. J Intell Manuf 31:2003–2017. https://doi.org/10.1007/s10845-020-01549-2

    Article  Google Scholar 

  40. Wang C, Tan XP, Tor SB, Lim CS (2020) Machine learning in additive manufacturing: state-of-the-art and perspectives. Additive Manuf 36:101538. https://doi.org/10.1016/j.addma.2020.101538

    Article  Google Scholar 

  41. Jin Z, Zhang Z, Demir K, Gu GX (2020) Machine learning for advanced additive manufacturing. Matter 3:1541–1556. https://doi.org/10.1016/j.matt.2020.08.023

    Article  Google Scholar 

  42. Meng L, McWilliams B, Jarosinski W, Park HY, Jung YG, Lee J, Zhang J (2020) Mach Learn Additive Manufacturing. Rev Jom 72:2363–2377. https://doi.org/10.1007/s11837-020-04155-y

    Article  Google Scholar 

  43. Sing SL, Kuo CN, Shih CT, Ho CC, Chua CK (2021) Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing. Virtual Phys Prototyp 16:372–386. https://doi.org/10.1080/17452759.2021.1944229

    Article  Google Scholar 

  44. Qi X, Chen G, Li Y, Cheng X, Li C (2019) Applying neural-network-based machine learning to additive manufacturing: current applications, challenges, and future perspectives. Engineering 5:721–729. https://doi.org/10.1016/j.eng.2019.04.012

    Article  Google Scholar 

  45. Razvi SS, Feng S, Narayanan A, Lee YTT, Witherell P (2019) A review of machine learning applications in additive manufacturing, in: Proceedings of the ASME Design Engineering Technical Conference, American Society of Mechanical Engineers, https://doi.org/10.1115/DETC2019-98415

  46. Qin J, Hu F, Liu Y, Witherell P, Wang CCL, Rosen DW, Simpson TW, Lu Y, Tang Q (2022) Research and application of machine learning for additive manufacturing. Additive Manuf 52:102691. https://doi.org/10.1016/j.addma.2022.102691

    Article  Google Scholar 

  47. Fu J, Li H, Song X, Fu MW (2022) Multi-scale defects in powder-based additively manufactured metals and alloys. J Mater Sci Technol 122:165–199. https://doi.org/10.1016/j.jmst.2022.02.015

    Article  Google Scholar 

  48. Fu Y, Downey ARJ, Yuan L, Zhang T, Pratt A, Balogun Y (2022) Machine learning algorithms for defect detection in metal laser-based additive manufacturing: a review. J Manuf Process 75:693–710. https://doi.org/10.1016/j.jmapro.2021.12.061

    Article  Google Scholar 

  49. Ko H, Witherell P, Lu Y, Kim S, Rosen DW (2021) Machine learning and knowledge graph based design rule construction for additive manufacturing. Additive Manuf 37:101620. https://doi.org/10.1016/j.addma.2020.101620

    Article  Google Scholar 

  50. Jiang J, Xiong Y, Zhang Z, Rosen DW (2022) Machine learning integrated design for additive manufacturing. J Intell Manuf 33:1073–1086. https://doi.org/10.1007/s10845-020-01715-6

    Article  Google Scholar 

  51. Liu Z, He B, Lyu T, Zou Y (2021) A review on additive manufacturing of titanium alloys for aerospace applications: directed energy deposition and beyond Ti-6Al-4V. Jom 73:1804–1818. https://doi.org/10.1007/s11837-021-04670-6

    Article  Google Scholar 

  52. Lin Z, Song K, Yu X (2021) A review on wire and arc additive manufacturing of titanium alloy. J Manuf Process 70:24–45. https://doi.org/10.1016/j.jmapro.2021.08.018

    Article  Google Scholar 

  53. Attar H, Ehtemam-Haghighi S, Kent D, Dargusch MS (2018) Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: a review. Int J Mach Tools Manuf 133:85–102. https://doi.org/10.1016/j.ijmachtools.2018.06.003

    Article  Google Scholar 

  54. Jang TS, Kim DE, Han G, Yoon CB, Jung H (2020) Powder based additive manufacturing for biomedical application of titanium and its alloys: a review. Biomed Eng Lett 10:505–516. https://doi.org/10.1007/s13534-020-00177-2

    Article  Google Scholar 

  55. Saboori A, Gallo D, Biamino S, Fino P, Lombardi M (2017) An overview of additive manufacturing of titanium components by directed energy deposition: microstructure and mechanical properties. Appl Sci (Switzerland). https://doi.org/10.3390/app7090883

    Article  Google Scholar 

  56. Moghimian P, Poirié T, Habibnejad-Korayem M, Zavala JA, Kroeger J, Marion F, Larouche F (2021) Metal powders in additive manufacturing: a review on reusability and recyclability of common titanium, nickel and aluminum alloys. Additive Manuf. https://doi.org/10.1016/j.addma.2021.102017

    Article  Google Scholar 

  57. Nematollahi M, Jahadakbar A, Mahtabi MJ, Elahinia M (2019) 12-Additive manufacturing (AM). Elsevier Ltd., Amsterdam

    Google Scholar 

  58. Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137:1573–1587. https://doi.org/10.1016/j.jclepro.2016.04.150

    Article  Google Scholar 

  59. Moher D, Shamseer L, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1. https://doi.org/10.1186/2046-4053-4-1

    Article  Google Scholar 

  60. Rousseau R, Naukometriya N, Mul’chenko (2021) Naukometriya, Nalimov and Mul’chenko. COLLNET J Scientometrics Inform Manage 15:213–224. https://doi.org/10.1080/09737766.2021.1943042

    Article  Google Scholar 

  61. Hess DJ, Hess PDJ (1997) Sciencestudies: an advanced introduction. NYU Press, New York

    MATH  Google Scholar 

  62. Leydesdorff L, Milojević S, Scientometrics. J.D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (second ed.), Elsevier, Oxford, UK (2015), 322-327. https://doi.org/10.1016/B978-0-08-097086-8.85030-8

  63. Hood WW, Wilson CS (2001) The literature of bibliometrics, scientometrics, and informetrics. Scientometrics 52:291–314. https://doi.org/10.1023/A:1017919924342

    Article  Google Scholar 

  64. Sengupta N (1992) Bibliometrics, informetrics, scientometrics and librametrics: an overview. Libri 42:75–98. https://doi.org/10.1515/libr.1992.42.2.75

    Article  Google Scholar 

  65. Martinez P, Al-Hussein M, Ahmad R (2019) A scientometric analysis and critical review of computer vision applications for construction. Autom Constr. https://doi.org/10.1016/j.autcon.2019.102947

    Article  Google Scholar 

  66. Chen W, Jin R, Xu Y, Wanatowski D, Li B, Yan L, Pan Z, Yang Y (2019) Adopting recycled aggregates as sustainable construction materials: a review of the scientific literature. Constr Build Mater 218:483–496. https://doi.org/10.1016/j.conbuildmat.2019.05.130

    Article  Google Scholar 

  67. Zhao L, Tang ZY, Zou X (2019) Mapping the knowledge domain of smart-city research: a bibliometric and scientometric analysis. Sustainability (Switzerland). https://doi.org/10.3390/su11236648

    Article  Google Scholar 

  68. Gibson I, Rosen D, Stucker B, Khorasani M (2021) Introduction and Basic Principles. Additive Manufacturing Technologies. Springer International Publishing, Cham, pp 1–21. https://doi.org/10.1007/978-3-030-56127-7_1

    Chapter  Google Scholar 

  69. Gibson I, Rosen D, Stucker B, Khorasani M (2021) Development of Additive Manufacturing Technology. Additive Manufacturing Technologies. Springer International Publishing, Cham, pp 23–51. https://doi.org/10.1007/978-3-030-56127-7_2

    Chapter  Google Scholar 

  70. Ethem Alpaydin, “4 Neural Networks and Deep Learning,” in Machine Learning, MIT Press, 2021, pp. 105–141. https://doi.org/10.7551/mitpress/13811.001.0001

  71. Jurij Prezelj J, Murovec S, Huemer-Kals K, Häsler P, Fischer, (2022) Identification of different manifestations of nonlinear stick–slip phenomena during creep groan braking noise by using the unsupervised learning algorithms k means and self-organizing map. Mech Syst Signal Process 166:0888–3270. https://doi.org/10.1016/j.ymssp.2021.108349

    Article  Google Scholar 

  72. Gaja H, Liou F (2018) Defect classification of laser metal deposition using logistic regression and artificial neural networks for pattern recognition. Int J Adv Manuf Technol 94:315–326. https://doi.org/10.1007/s00170-017-0878-9

    Article  Google Scholar 

  73. Kaveh Bastani, Prahalad K, Rao, Zhenyu (James) Kong (2016) An online sparse estimation-based classification approach for real-time monitoring in advanced manufacturing processes from heterogeneous sensor data. IIE Trans 48(7):579–598. https://doi.org/10.1080/0740817X.2015.1122254

    Article  Google Scholar 

  74. Yao X, Moon SK, Bi G (2017) A hybrid machine learning approach for additive manufacturing design feature recommendation. Rapid Prototyp J 23:983–997. https://doi.org/10.1108/RPJ-03-2016-0041

    Article  Google Scholar 

  75. Paturi UMR, Cheruku S (2021) Application and performance of machine learning techniques in manufacturing sector from the past two decades: a review. Mater Today: Proceed 38:2392–2401. https://doi.org/10.1016/j.matpr.2020.07.209

    Article  Google Scholar 

  76. Malley S, Reina C, Nacy S, Gilles J, Koohbor B, Youssef G (2022) Predictability of mechanical behavior of additively manufactured particulate composites using machine learning and data-driven approaches. Comput Ind 142:0166–3615. https://doi.org/10.1016/j.compind.2022.103739

    Article  Google Scholar 

  77. Snow Z, Diehl B, Reutzel EW, Nassar A (2021) Toward in-situ flaw detection in laser powder bed fusion additive manufacturing through layerwise imagery and machine learning. J Manuf Syst 59:12–26. https://doi.org/10.1016/j.jmsy.2021.01.008

    Article  Google Scholar 

  78. Douard A, Grandvallet C, Pourroy F, Vignat F (2019) An Example of Machine Learning Applied in Additive Manufacturing, IEEE International Conference on Industrial Engineering and Engineering Management. 2019-Decem 1746–1750. https://doi.org/10.1109/IEEM.2018.8607275

  79. Jafari-Marandi R, Khanzadeh M, Tian W, Smith B, Bian L (2019) From in-situ monitoring toward high-throughput process control: cost-driven decision-making framework for laser-based additive manufacturing. J Manuf Syst 51:29–41. https://doi.org/10.1016/j.jmsy.2019.02.005

    Article  Google Scholar 

  80. Khanzadeh M, Chowdhury S, Marufuzzaman M, Tschopp MA, Bian L (2018) Porosity prediction: supervised-learning of thermal history for direct laser deposition. J Manuf Syst 47:69–82. https://doi.org/10.1016/j.jmsy.2018.04.001

    Article  Google Scholar 

  81. Kusano M, Miyazaki S, Watanabe M, Kishimoto S, Bulgarevich DS, Ono Y, Yumoto A (2020) Tensile properties prediction by multiple linear regression analysis for selective laser melted and post heat-treated Ti-6Al-4V with microstructural quantification. Mater Sci Eng A 787:139549. https://doi.org/10.1016/j.msea.2020.139549

    Article  Google Scholar 

  82. Imani F, Gaikwad A, Montazeri M, Rao P, Yang H, Reutzel E (2018) Process mapping and in-process monitoring of porosity in laser powder bed fusion using layerwise optical imaging. J Manuf Sci Eng Trans ASME. https://doi.org/10.1115/1.4040615

    Article  Google Scholar 

  83. Taheri H, Koester LW, Bigelow TA, Faierson EJ, Bond LJ (2019) In situ additive manufacturing process monitoring with an acoustic technique: clustering performance evaluation using K-means algorithm. J Manuf Sci Eng Trans ASME. https://doi.org/10.1115/1.4042786

    Article  Google Scholar 

  84. Seifi SH, Tian W, Doude H, Tschopp MA, Bian L (2019) Layer-Wise modeling and anomaly detection for laser-based additive manufacturing. J Manuf Sci Eng Trans ASME. https://doi.org/10.1115/1.4043898

    Article  Google Scholar 

  85. Miyazaki S, Kusano M, Bulgarevich DS, Kishimoto S, Yumoto A, Watanabe M (2019) Image segmentation and analysis for microstructure and property evaluations on Ti6Al4V fabricated by selective laser melting. Mater Trans 60:561–568. https://doi.org/10.2320/matertrans.MBW201806

    Article  Google Scholar 

  86. Williams J, Dryburgh P, Clare A, Rao P, Samal A (2018) Defect detection and monitoring in metal additive manufactured parts through deep learning of spatially resolved acoustic spectroscopy signals. Smart and Sustain Manuf Syst 2:204–226. https://doi.org/10.1520/SSMS20180035

    Article  Google Scholar 

  87. Gaikwad A, Imani F, Yang H, Reutzel E, Rao P (2019) In situ monitoring of thin-wall build quality in laser powder bed fusion using deep learning. Smart and Sustain Manuf Syst 3:98–121. https://doi.org/10.1520/SSMS20190027

    Article  Google Scholar 

  88. Khanzadeh M, Chowdhury S, Tschopp MA, Doude HR, Marufuzzaman M, Bian L (2019) In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Trans 51:437–455. https://doi.org/10.1080/24725854.2017.1417656

    Article  Google Scholar 

  89. Cui W, Zhang Y, Zhang X, Li L, Liou F (2020) Metal additive manufacturing parts inspection using convolutional neural network. Appl Sci (Switzerland). https://doi.org/10.3390/app10020545

    Article  Google Scholar 

  90. Khorasani AM, Gibson I, Ghaderi A, Mohammed MI (2019) Investigation on the effect of heat treatment and process parameters on the tensile behaviour of SLM Ti-6Al-4V parts. Int J Adv Manuf Technol 101:3183–3197. https://doi.org/10.1007/s00170-018-3162-8

    Article  Google Scholar 

  91. Liu Z, Zhang J, He B, Zou Y (2021) High-speed nanoindentation mapping of a near-alpha titanium alloy made by additive manufacturing. J Mater Res 36:2223–2234. https://doi.org/10.1557/s43578-021-00204-7

    Article  Google Scholar 

  92. Tian Q, Guo S, Melder E, Bian L, Guo W (2021) Deep learning-based data fusion method for in situ porosity detection in laser-based additive manufacturing. J Manuf Sci Eng Trans ASME 143:1–14. https://doi.org/10.1115/1.4048957

    Article  Google Scholar 

  93. Mehrpouya M, Gisario A, Rahimzadeh A, Nematollahi M, Baghbaderani KS, Elahinia M (2019) A prediction model for finding the optimal laser parameters in additive manufacturing of NiTi shape memory alloy. Int J Adv Manuf Technol 105:4691–4699. https://doi.org/10.1007/s00170-019-04596-z

    Article  Google Scholar 

  94. Narayana PL, Kim JH, Lee J, Choi SW, Lee S, Park CH, Yeom JT, Reddy NGS, Hong JK (2021) Optimization of process parameters for direct energy deposited Ti-6Al-4V alloy using neural networks. Int J Adv Manuf Technol 114:3269–3283. https://doi.org/10.1007/s00170-021-07115-1

    Article  Google Scholar 

  95. Ngwoke CC, Mahamood RM, Aigbodion VS, Jen TC, Adedeji PA, Akinlabi ET (2022) Soft computing-based process optimization in laser metal deposition of Ti-6Al-4 V. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-08781-5

    Article  Google Scholar 

  96. Gaja H, Liou F (2017) Defects monitoring of laser metal deposition using acoustic emission sensor. Int J Adv Manuf Technol 90:561–574. https://doi.org/10.1007/s00170-016-9366-x

    Article  Google Scholar 

  97. Li J, Sage M, Guan X, Brochu M, Zhao YF (2020) Machine learning-enabled competitive grain growth behavior study in directed energy deposition fabricated Ti6Al4V. Jom 72:458–464. https://doi.org/10.1007/s11837-019-03917-7

    Article  Google Scholar 

  98. Bhardwaj T, Shukla M (2020) Laser additive manufacturing- direct energy deposition of Ti-15Mo biomedical alloy: artificial neural network based modeling of track dilution. Lasers in Manuf Mater Process 7:245–258. https://doi.org/10.1007/s40516-020-00117-z

    Article  Google Scholar 

  99. Snell R, Tammas-Williams S, Chechik L, Lyle A, Hernández-Nava E, Boig C, Panoutsos G, Todd I (2020) Methods for rapid pore classification in metal additive manufacturing. Jom 72:101–109. https://doi.org/10.1007/s11837-019-03761-9

    Article  Google Scholar 

  100. Bao H, Wu S, Wu Z, Kang G, Peng X, Withers PJ (2021) A machine-learning fatigue life prediction approach of additively manufactured metals. Eng Fract Mech 242:107508. https://doi.org/10.1016/j.engfracmech.2020.107508

    Article  Google Scholar 

  101. Zhan Z, Hu W, Meng Q (2021) Data-driven fatigue life prediction in additive manufactured titanium alloy: a damage mechanics based machine learning framework. Eng Fract Mech 252:107850. https://doi.org/10.1016/j.engfracmech.2021.107850

    Article  Google Scholar 

  102. Dang L, He X, Tang D, Li Y, Wang T (2022) A fatigue life prediction approach for laser-directed energy deposition titanium alloys by using support vector regression based on pore-induced failures. Int J Fatigue 159:106748. https://doi.org/10.1016/j.ijfatigue.2022.106748

    Article  Google Scholar 

  103. Li J, Yang Z, Qian G, Berto F (2022) Machine learning based very-high-cycle fatigue life prediction of Ti-6Al-4V alloy fabricated by selective laser melting. Int J Fatigue 158:106764. https://doi.org/10.1016/j.ijfatigue.2022.106764

    Article  Google Scholar 

  104. Chen R, Imani M, Imani F (2021) Joint active search and neuromorphic computing for efficient data exploitation and monitoring in additive manufacturing. J Manuf Process 71:743–752. https://doi.org/10.1016/j.jmapro.2021.09.048

    Article  Google Scholar 

  105. Francis J, Bian L (2019) Deep learning for distortion prediction in laser-based Additive Manufacturing using Big Data. Manuf Lett 20:10–14. https://doi.org/10.1016/j.mfglet.2019.02.001

    Article  Google Scholar 

  106. Schur R, Ghods S, Wisdom C, Pahuja R, Montelione A, Arola D, Ramulu M (2021) Mechanical anisotropy and its evolution with powder reuse in Electron Beam Melting AM of Ti6Al4V. Mater Des 200:109450. https://doi.org/10.1016/j.matdes.2021.109450

    Article  Google Scholar 

  107. Mojahed Yazdi R, Imani F, Yang H (2020) A hybrid deep learning model of process-build interactions in additive manufacturing. J Manuf Syst 57:460–468. https://doi.org/10.1016/j.jmsy.2020.11.001

    Article  Google Scholar 

  108. Snow Z, Reutzel EW, Petrich J (2022) Correlating in-situ sensor data to defect locations and part quality for additively manufactured parts using machine learning. J Mater Process Technol 302:117476. https://doi.org/10.1016/j.jmatprotec.2021.117476

    Article  Google Scholar 

  109. Shin DS, Lee CH, Kühn U, Lee SC, Park SJ, Schwab H, Scudino S, Kosiba K (2021) Optimizing laser powder bed fusion of Ti-5Al-5V-5Mo-3Cr by artificial intelligence. J Alloys Compd 862:158018. https://doi.org/10.1016/j.jallcom.2020.158018

    Article  Google Scholar 

  110. Maurya AK, Yeom JT, Kang SW, Park CH, Hong JK, Reddy NS (2022) Optimization of hybrid manufacturing process combining forging and wire-arc additive manufactured Ti-6Al-4V through hot deformation characterization. J Alloys Compd 894:162453. https://doi.org/10.1016/j.jallcom.2021.162453

    Article  Google Scholar 

  111. Harrison R, Holm EA, de Graef M (2019) On the use of 2D moment invariants in the classification of additive manufacturing powder feedstock. Mater Charact 149:255–263. https://doi.org/10.1016/j.matchar.2019.01.019

    Article  Google Scholar 

  112. Donegan SP, Schwalbach EJ, Groeber MA (2020) Zoning additive manufacturing process histories using unsupervised machine learning. Mater Charact 161:110123. https://doi.org/10.1016/j.matchar.2020.110123

    Article  Google Scholar 

  113. Alabort E, Tang YT, Barba D, Reed RC (2022) Alloys-by-design: a low-modulus titanium alloy for additively manufactured biomedical implants. Acta Mater 229:117749. https://doi.org/10.1016/j.actamat.2022.117749

    Article  Google Scholar 

  114. Mahmoudi M, Tapia G, Franco B, Ma J, Arroyave R, Karaman I, Elwany A (2018) On the printability and transformation behavior of nickel-titanium shape memory alloys fabricated using laser powder-bed fusion additive manufacturing. J Manuf Process 35:672–680. https://doi.org/10.1016/j.jmapro.2018.08.037

    Article  Google Scholar 

  115. Nguyen DS, Park HS, Lee CM (2020) Optimization of selective laser melting process parameters for Ti-6Al-4V alloy manufacturing using deep learning. J Manuf Process 55:230–235. https://doi.org/10.1016/j.jmapro.2020.04.014

    Article  Google Scholar 

  116. Scime L, Beuth J (2018) A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Additive Manuf 24:273–286. https://doi.org/10.1016/j.addma.2018.09.034

    Article  Google Scholar 

  117. Montazeri M, Nassar AR, Stutzman CB, Rao P (2019) Heterogeneous sensor-based condition monitoring in directed energy deposition. Additive Manuf 30:100916. https://doi.org/10.1016/j.addma.2019.100916

    Article  Google Scholar 

  118. Zhang B, Liu S, Shin YC (2019) In-Process monitoring of porosity during laser additive manufacturing process. Additive Manuf 28:497–505. https://doi.org/10.1016/j.addma.2019.05.030

    Article  Google Scholar 

  119. Scime L, Siddel D, Baird S, Paquit V (2020) Layer-wise anomaly detection and classification for powder bed additive manufacturing processes: a machine-agnostic algorithm for real-time pixel-wise semantic segmentation. Additive Manuf 36:101453. https://doi.org/10.1016/j.addma.2020.101453

    Article  Google Scholar 

  120. Liu S, Stebner AP, Kappes BB, Zhang X (2021) Machine learning for knowledge transfer across multiple metals additive manufacturing printers. Additive Manuf 39:101877. https://doi.org/10.1016/j.addma.2021.101877

    Article  Google Scholar 

  121. Ghods S, Schur R, Schultz E, Pahuja R, Montelione A, Wisdom C, Arola D, Ramulu M (2021) Powder reuse and its contribution to porosity in additive manufacturing of Ti6Al4V. Materialia (Oxf). https://doi.org/10.1016/j.mtla.2020.100992

    Article  Google Scholar 

  122. Banerjee M, Banerjee A, Mukherjee D, Singla AK, Singh J (2023) Machine Learning Module for Predicting Tensile Response of SLMed Ti-6Al-4V. In: Ramesh Babu N, Kumar S, Thyla PR, Sripriyan K (eds) Advances in Additive Manufacturing and Metal joining. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-7612-4_18

    Chapter  Google Scholar 

  123. Cutolo A, Lammens N, Boer KV, Erdelyi H, Schulz M, Muralidharan GK, Thijs L, Elangeswaran C, Hooreweder BV (2023) Fatigue life prediction of a L-PBF component in Ti-6Al-4V using sample data, FE-based simulations and machine learning. Int J Fatigue 167:107276. https://doi.org/10.1016/j.ijfatigue.2022.107276

    Article  Google Scholar 

  124. Dharmadhikari S, Menon N, Basak A (2023) A reinforcement learning approach for process parameter optimization in additive manufacturing. Addit Manuf 71:103556. https://doi.org/10.1016/j.addma.2023.103556

    Article  Google Scholar 

  125. Goh GD, Huang X, Huang S, Thong JLJ, Seah JJ, Yeong WY (2023) Data imputation strategies for process optimization of laser powder bed fusion of Ti6Al4V using machine learning. Mater Sci Addit Manuf 2(1):50. https://doi.org/10.36922/msam.50

    Article  Google Scholar 

  126. Xi. Gong D, Zeng WG, Meijer G, Manogharan, (2022) Additive manufacturing: a machine learning model of process-structure-property linkages for machining behavior of Ti-6Al-4V. Mater Sci Addit Manuf (MSAM) 1(1):6

    Article  Google Scholar 

  127. Gui Y, Aoyagi K, Chiba A (2023) Development of macro-defect-free PBF-EB-processed Ti–6Al–4V alloys with superior plasticity using PREP-synthesized powder and machine learning-assisted process optimization. Mater Sci Eng: A 144595. https://doi.org/10.1016/j.msea.2023.144595

    Article  Google Scholar 

  128. Horňas J, Běhal J, Homola P, Senck S, Holzleitner M, Godja N, Pásztor Z, Hegedüs B, Doubrava R, Růžek R, Petrusová L (2023) Modelling fatigue life prediction of additively manufactured Ti-6Al-4V samples using machine learning approach. Int J Fatigue 169:107483. https://doi.org/10.1016/j.ijfatigue.2022.107483

    Article  Google Scholar 

  129. Jia Y, Fu R, Ling C, Shen Z, Zheng L, Zhong Z, Hong Y (2023) Fatigue life prediction based on a deep learning method for Ti-6Al-4V fabricated by laser powder bed fusion up to very-high-cycle fatigue regime. Int J Fatigue 172:107645. https://doi.org/10.1016/j.ijfatigue.2023.107645

    Article  Google Scholar 

  130. Maitra V, Shi J Surface Roughness Prediction for Additively Manufactured Ti-6Al-4V Components Based on Supervised Learning Models, Proceedings of the ASME 2022 17th International Manufacturing Science and Engineering Conference. Volume 1: Additive Manufacturing; Biomanufacturing; Life Cycle Engineering; Manufacturing Equipment and Automation; Nano/Micro/Meso Manufacturing. West Lafayette, Indiana, USA. June 27–July 1, 2022. V001T01A013. ASME. https://doi.org/10.1115/MSEC2022-85329

  131. Wang C, Chandra S, Huang S, Tor SB, Tan X (2023) Unraveling process-microstructure-property correlations in powder-bed fusion additive manufacturing through information-rich surface features with deep learning. J Mater Process Technol 311:117804. https://doi.org/10.1016/j.jmatprotec.2022.117804

    Article  Google Scholar 

  132. Maitra V, Shi J, Lu C (2022) Robust prediction and validation of as-built density of Ti-6Al-4V parts manufactured via selective laser melting using a machine learning approach. J Manuf Process 78:183–201. https://doi.org/10.1016/j.jmapro.2022.04.020

    Article  Google Scholar 

  133. Yao Z, Jia X, Yu J, Yang M, Huang C, Yang Z, Wang C, Yang T, Wang S, Shi R, Wei J, Liu X (2023) Rapid accomplishment of strength/ductility synergy for additively manufactured Ti-6Al-4V facilitated by machine learning. Mater Design 225:111559. https://doi.org/10.1016/j.matdes.2022.111559

    Article  Google Scholar 

  134. Maitra V, Shi J (2023) Evaluating the predictability of Surface Roughness of Ti–6Al–4V alloy from selective laser melting. Adv Eng Mater. https://doi.org/10.1002/adem.202300075

    Article  Google Scholar 

  135. Zou M, Jiang WG, Qin QH, Liu YC, Li ML (2022) Optimized XGBoost Model with small dataset for Predicting relative density of Ti-6Al-4V Parts manufactured by selective laser melting. Materials 15:5298. https://doi.org/10.3390/ma15155298

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Maheshwera Reddy Paturi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paturi, U., Palakurthy, S., Cheruku, S. et al. Role of Machine Learning in Additive Manufacturing of Titanium Alloys—A Review. Arch Computat Methods Eng 30, 5053–5069 (2023). https://doi.org/10.1007/s11831-023-09969-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09969-y

Navigation