Skip to main content
Log in

A Comprehensive Review on RSM-Coupled Optimization Techniques and Its Applications

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This review article provides a comprehensive analysis of the optimization techniques used in a wide range of engineering applications. The comparison of various approaches such as Response surface methodology (RSM), Genetic algorithm (GA) and Artificial neural network (ANN) towards optimization problems is widely elaborated. The factors that affect the optimization using various techniques are addressed along with the safety precautions to be followed in a sequential manner to achieve a better optimization model. Furthermore, the coupling of two distinct algorithms (RSM-GA, ANN-GA) are explained and this hybrid approach provides a better localizing of the optimal point with a higher accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Onwubolu GC, Babu BV (2004) New optimization techniques in engineering. Springer Berlin Heidelberg, Berlin

    Book  MATH  Google Scholar 

  2. Pistikopoulos EN et al (2021) Process systems engineering—the generation next? Comput Chem Eng 147:107252. https://doi.org/10.1016/j.compchemeng.2021.107252

    Article  Google Scholar 

  3. Strawderman WE (2002) Practical optimization methods with mathematica (R) applications, optimization foundations and applications. J Am Stat Assoc 97(457):366–366. https://doi.org/10.1198/jasa.2002.s467

    Article  Google Scholar 

  4. Sun S, Cao Z, Zhu H, Zhao J (2020) A survey of optimization methods from a machine learning perspective. IEEE Trans Cybern 50(8):3668–3681. https://doi.org/10.1109/TCYB.2019.2950779

    Article  Google Scholar 

  5. Spedicato E, Xia Z, Zhang L (2008) ABS algorithms for optimization. Encycl Optim. https://doi.org/10.1007/978-0-387-74759-0_2

    Article  MATH  Google Scholar 

  6. Arora RK (2016) Optimization: algorithms and applications. Choice Rev Online. https://doi.org/10.5860/choice.195857

    Article  Google Scholar 

  7. Wilson DR, Martinez TR (2003) The general inefficiency of batch training for gradient descent learning. Neural Netw 16(10):1429–1451. https://doi.org/10.1016/S0893-6080(03)00138-2

    Article  Google Scholar 

  8. Sergeyev YD, Kvasov DE, Mukhametzhanov MS (2018) On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci Rep 8(1):1–9. https://doi.org/10.1038/s41598-017-18940-4

    Article  Google Scholar 

  9. Yaqoob I et al (2016) Big data: from beginning to future. Int J Inf Manag 36(6):1231–1247. https://doi.org/10.1016/j.ijinfomgt.2016.07.009

    Article  Google Scholar 

  10. Dean A, Voss D, Draguljić D (2017) Response surface methodology. Springer, Cham, pp 565–614

    Google Scholar 

  11. Wong WK, Ming CI (2019) A review on metaheuristic algorithms: recent trends, benchmarking and applications. Int Conf Smart Comput Commun ICSCC 2019:1–5. https://doi.org/10.1109/ICSCC.2019.8843624

    Article  Google Scholar 

  12. Dillen W, Lombaert G, Schevenels M (2021) Performance assessment of metaheuristic algorithms for structural optimization taking into account the influence of algorithmic control parameters. Front Built Environ 7(March):1–16. https://doi.org/10.3389/fbuil.2021.618851

    Article  Google Scholar 

  13. Agrawal P, Abutarboush HF, Ganesh T, Mohamed AW (2021) Metaheuristic algorithms on feature selection: a survey of one decade of research (2009–2019). IEEE Access 9:26766–26791. https://doi.org/10.1109/ACCESS.2021.3056407

    Article  Google Scholar 

  14. Said GAEA, Mahmoud AM (2014) A comparative study of meta-heuristic algorithms for solving quadratic assignment problem. Int J Adv Comput Sci Appl 5(1):1–6

    Google Scholar 

  15. Abdel-Basset M, Abdel-Fatah L, Sangaiah AK (2018) Chapter 10—Metaheuristic algorithms: a comprehensive review. Computational intelligence for multimedia big data on the cloud with engineering applications. Elsevier, Amsterdam, pp 185–231

    Chapter  Google Scholar 

  16. Zhang G, Pan L, Neri F, Gong M, Leporati A (2017) Metaheuristic optimization: algorithmic design and applications. J Optim 2017:2–4

    MathSciNet  MATH  Google Scholar 

  17. Hussain K, Najib M, Salleh M, Cheng S, Shi Y (2019) Metaheuristic research: a comprehensive survey. Artif Intell Rev 52(4):2191–2233. https://doi.org/10.1007/s10462-017-9605-z

    Article  Google Scholar 

  18. Slowik A, Kwasnicka H (2020) Evolutionary algorithms and their applications to engineering problems. Neural Comput Appl 32(16):12363–12379. https://doi.org/10.1007/s00521-020-04832-8

    Article  Google Scholar 

  19. Jangid S, Puri R (2019) Evolutionary algorithms: a critical review and its future prospects. Int J Trend Res Dev 1:7–9

    Google Scholar 

  20. Chakraborty A, Kar AK (2017) Swarm intelligence: a review of algorithms swarm intelligence: a review of algorithms. Model Optim Sci Technol. https://doi.org/10.1007/978-3-319-50920-4

    Article  Google Scholar 

  21. Brezocnik L, Fister JI, Podgorelec V (2018) Swarm intelligence algorithms for feature selection. Appl Sci. https://doi.org/10.3390/app8091521

    Article  Google Scholar 

  22. Singh A, Kumar A (2021) Applications of nature-inspired meta-heuristic algorithms: a survey applications of nature-inspired meta-heuristic algorithms: a survey Avjeet Singh* and Anoj Kumar. Int J Adv Intell Paradig. https://doi.org/10.1504/IJAIP.2021.10027703

    Article  Google Scholar 

  23. Priyadarshini J, Premalatha M, Cep R, Jayasudha M, Kalita K (2023) Analyzing physics-inspired metaheuristic algorithms in feature selection with K-nearest-neighbor. Appl Sci 13:906

    Article  Google Scholar 

  24. Biswas A, Mishra KK, Tiwari S, Misra AK (2013) Physics-inspired optimization algorithms: a survey. J Optim 2013:1

    Google Scholar 

  25. Beheshti Z, Mariyam S, Shamsuddin H (2013) A review of population-based meta-heuristic algorithm. Int J Adv Soft Comput Appl 5(1):1–35

    Google Scholar 

  26. Rai R, Das A, Ray S, Gopal K (2022) Human—inspired optimization algorithms: theoretical foundations, algorithms, open—research issues and application for multi—level thresholding. Springer, Netherlands

    Google Scholar 

  27. Mingyi Zhang Y, Zhang Y (2013) The human-inspired algorithm: a hybrid nature-inspired approach to optimizing continuous functions with constraints. J Comput Intell Electron Syst 2(1):80–87

    Article  Google Scholar 

  28. Kumar V (2022) A state-of-the-art review of heuristic and metaheuristic optimization techniques for the management of water resources. Water supply 22(4):3702–3728. https://doi.org/10.2166/ws.2022.010

    Article  MathSciNet  Google Scholar 

  29. Bhosale V, Shastri SS, Khandare A (2017) A review of genetic algorithm used for optimizing scheduling of resource constraint construction projects. Int Res J Eng Technol 1:2869–2872

    Google Scholar 

  30. Sioshansi R, Conejo AJ (2017) Optimization in engineering, 1st edn. Springer International Publishing, Cham

    Book  MATH  Google Scholar 

  31. Rao SS (2019) Engineering optimization: theory and practice. John Wiley & Sons

    Book  Google Scholar 

  32. Chen Wu Y, Wen Feng J (2018) Development and application of artificial neural network. Wirel Pers Commun 102(2):1645–1656. https://doi.org/10.1007/s11277-017-5224-x

    Article  Google Scholar 

  33. Ilin R, Kozma R, Werbos PJ (2008) Beyond feedforward models trained by backpropagation: a practical training tool for a more efficient universal approximator. IEEE Trans Neural Networks 19(6):929–937. https://doi.org/10.1109/TNN.2008.2000396

    Article  Google Scholar 

  34. Apicella A, Donnarumma F, Isgrò F, Prevete R (2021) A survey on modern trainable activation functions. Neural Netw 138:14–32. https://doi.org/10.1016/j.neunet.2021.01.026

    Article  MATH  Google Scholar 

  35. Bhattacharya SS, Garlapati VK, Banerjee R (2011) Optimization of laccase production using response surface methodology coupled with differential evolution. N Biotechnol 28(1):31–39. https://doi.org/10.1016/j.nbt.2010.06.001

    Article  Google Scholar 

  36. Sarker IH (2021) Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci 2(6):1–20. https://doi.org/10.1007/s42979-021-00815-1

    Article  MathSciNet  Google Scholar 

  37. Jha AK, Sit N (2021) Comparison of response surface methodology (RSM) and artificial neural network (ANN) modelling for supercritical fluid extraction of phytochemicals from Terminalia chebula pulp and optimization using RSM coupled with desirability function (DF) and genetic. Ind Crops Prod 170:113769. https://doi.org/10.1016/j.indcrop.2021.113769

    Article  Google Scholar 

  38. Deshwal S, Kumar A, Chhabra D (2020) Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement. CIRP J Manuf Sci Technol 31:189–199. https://doi.org/10.1016/j.cirpj.2020.05.009

    Article  Google Scholar 

  39. Kumari M, Gupta SK (2019) Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP)—an endeavor to diminish probable cancer risk. Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-019-54902-8

    Article  Google Scholar 

  40. Sarabia LA, Ortiz MC (2009) Response surface methodology. Comprehensive chemometrics. Elsevier, Amsterdam, pp 345–390

    Chapter  Google Scholar 

  41. M. C. Fu, Handbook of simulation optimization, vol. 216. 2015.

  42. Khuri S, Mukhopadhyay AI (2010) Response surface methodology. Wiley Interdiscip Rev Comput Stat 2(2):128–149

    Article  Google Scholar 

  43. Draper DK, Lin NR (1996) Response surface designs. Design Analy Exp 13:343–375

    Article  MathSciNet  MATH  Google Scholar 

  44. Dean D, Voss A, Draguljić D, Dean D, Voss A, Draguljić D (2017) Response surface methodology. Des Anal Exp. https://doi.org/10.1007/978-3-319-52250-0_16

    Article  Google Scholar 

  45. Sarabia LA, Ortiz MC (2009) Response surface methodology. Compr Chemom 1(2):345–390. https://doi.org/10.1016/B978-044452701-1.00083-1

    Article  Google Scholar 

  46. Myers S, Vining RH, Giovannitti-Jensen GG, Myers A (1992) Variance dispersion properties of second-order response surface designs. J Qual Technol 24(1):1–11

    Article  Google Scholar 

  47. Hadiyat MA, Sopha BM, Wibowo BS (2022) Response surface methodology using observational data: a systematic literature review. Appl Sci. https://doi.org/10.3390/app122010663

    Article  Google Scholar 

  48. Hanrahan D, Zhu G, Gibani J, Patil DG (2005) Chemometrics and statistics|experimental design. Encycl Anal Sci 8:13

    Google Scholar 

  49. Ismail M, Author C (2013) Alternative approach to fitting first-order model to the response surface methodology. Pakistan J Commer Soc Sci 7(1):157–165

    Google Scholar 

  50. Lamidi I, Olaleye S, Bankole N, Obalola Y, Aribike A, Adigun I (2022) Applications of response surface methodology (RSM) in product design, development, and process optimization. Response Surf Methodol Res Adv Appl. https://doi.org/10.5772/intechopen.106763

    Article  Google Scholar 

  51. Alrweili H, Georgiou S, Stylianou S (2020) A new class of second-order response surface designs. IEEE Access 8:115123–115132. https://doi.org/10.1109/ACCESS.2020.3001621

    Article  Google Scholar 

  52. Gunawan A (2014) Institutional knowledge at Singapore management university second order-response surface model for the automated parameter tuning problem second order-response surface model for the automated parameter tuning problem. IEEE Int Conf Ind Eng Eng Manag 2014:652–656

    Google Scholar 

  53. Saini N (2017) Review of selection methods in genetic algorithms. Int J Eng Comput Sci 6(12):23261–23263. https://doi.org/10.18535/ijecs/v6i12.04

    Article  Google Scholar 

  54. Dasgupta T, Pillai NS, Rubin DB (2015) Causal inference from 2 K factorial designs by using potential outcomes. J R Stat Soc Ser B 77(4):727–753

    Article  MathSciNet  MATH  Google Scholar 

  55. Branson Z, Dasgupta T, Rubin DB (2016) Improving covariate balance in 2k factorial designs via rerandomization with an application to a New York city department of education high school study. Ann Appl Stat 10(4):1958–1976. https://doi.org/10.1214/16-AOAS959

    Article  MathSciNet  MATH  Google Scholar 

  56. Kandananond K (2013) Applying 2k factorial design to assess the performance of ANN and SVM methods for forecasting stationary and non-stationary time series. Procedia Comput Sci 22:60–69. https://doi.org/10.1016/j.procs.2013.09.081

    Article  Google Scholar 

  57. Tablets EMI (2021) Application of Plackett–Burman design of experiments in the identification of main factors’ in the formulation of dabigatran etexilate mesylate immediate-release tablets. Int J Pharm Sci Res 12(12):6587–6592. https://doi.org/10.13040/IJPSR.0975-8232.12(12).6587-92

    Article  Google Scholar 

  58. Ekpenyong MG, Antai SP, Asitok D, Ekpo BO (2017) Plackett–Burman design and response surface optimization of medium trace nutrients for glycolipopeptide biosurfactant production. Iran Biomed J 21(4):249–260. https://doi.org/10.18869/acadpub.ibj.21.4.249

    Article  Google Scholar 

  59. Chaudhari SR (2020) Application of Plackett–Burman and central composite designs for screening and optimization of factor influencing the chromatographic conditions of HPTLC method for quantification of efonidipine hydrochloride. J Anal Sci Technol 11(48):1–13

    Google Scholar 

  60. Peele A, Krupanidhi S, Reddy ER, Indira M, Bobby N (2018) Plackett–Burman design for screening of process components and their effects on production of lactase by newly isolated Bacillus sp. VUVD101 strain from Dairy effluent. Beni-Suef Univ J Basic Appl Sci 7(4):543–546. https://doi.org/10.1016/j.bjbas.2018.06.006

    Article  Google Scholar 

  61. Patel MB, Shaikh F, Patel V, Surti NI (2017) Application of simplex centroid design in formulation and optimization of floating matrix tablets of metformin. J Appl Pharm Sci 7(4):23–30. https://doi.org/10.7324/JAPS.2017.70403

    Article  Google Scholar 

  62. Bahramparvar M, Tehrani MM (2015) Application of simplex-centroid mixture design to optimize stabilizer combinations for ice cream manufacture. J Food Sci Technol 52(3):1480–1488. https://doi.org/10.1007/s13197-013-1133-5

    Article  Google Scholar 

  63. Article R, Reji M, Kumar R (2023) Response surface methodology (RSM): an overview to analyze multivariate data. Indian J Microbiol Res 9(4):241–248

    Article  Google Scholar 

  64. Phanphet S (2021) Application of full factorial design for optimization of production process by turning machine. J Tianjin Univ Sci Technol ISSN 54(08):35–55. https://doi.org/10.17605/OSF.IO/3TESD

    Article  Google Scholar 

  65. Al Sadi J (2018) Designing experiments: 3 level full factorial design and variation of processing parameters methods for polymer colors. Adv Sci Technol Eng Syst J 3(5):109–115

    Article  Google Scholar 

  66. Salihu MM, Nwaosu CS (2021) Discrimination between 2k and 3k factorial designs using optimality based criterion Murtala Muhammad Salihu and Chigozie Sylvester Nwaosu. African Sch J pure Appl Sci 22(9):79–94

    Google Scholar 

  67. Aggarwal ML, Kaul R (1999) Hidden projection properties of some optimal designs. Stat Probab Lett 43(1):87–92. https://doi.org/10.1016/S0167-7152(98)00249-1

    Article  MathSciNet  MATH  Google Scholar 

  68. Kasina MM, Joseph K, John M (2020) Application of central composite design to optimize spawns propagation. Open J Optim 9:47–70. https://doi.org/10.4236/ojop.2020.93005

    Article  Google Scholar 

  69. Sadhukhan B, Mondal NK, Chattoraj S (2016) ScienceDirect optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala Int J Mod Sci 2(3):145–155. https://doi.org/10.1016/j.kijoms.2016.03.005

    Article  Google Scholar 

  70. Bayuo J, Abdullai M, Kenneth A, Pelig B (2020) Optimization using central composite design (CCD) of response surface methodology (RSM) for biosorption of hexavalent chromium from aqueous media. Appl Water Sci 10(6):1–12. https://doi.org/10.1007/s13201-020-01213-3

    Article  Google Scholar 

  71. Hassan H, Adam SK, Alias E, Mohd M, Meor R, Affandi M (2021) Central composite design for formulation and optimization of solid lipid nanoparticles to enhance oral bioavailability of acyclovir. Molecules 26(5432):1–19

    Google Scholar 

  72. Alam P et al (2022) Box–Behnken design ( BBD ) application for optimization of chromatographic conditions in RP-HPLC method development for the estimation of thymoquinone in Nigella sativa seed powder. Processes 10:1082

    Article  Google Scholar 

  73. Yadav P, Rastogi V, Verma A (2020) Application of Box–Behnken design and desirability function in the development and optimization of self-nanoemulsifying drug delivery system for enhanced dissolution of ezetimibe. Futur J Pharm Sci 6(1):1–20

    Article  Google Scholar 

  74. Darvishmotevalli M, Zarei A, Moradnia M, Noorisepehr M, Mohammadi H (2019) Optimization of saline wastewater treatment using electrochemical oxidation process: Prediction by RSM method. MethodsX 6:1101–1113. https://doi.org/10.1016/j.mex.2019.03.015

    Article  Google Scholar 

  75. Singh Pali H, Sharma A, Kumar N, Singh Y (2021) Biodiesel yield and properties optimization from Kusum oil by RSM. Fuel 291:120218. https://doi.org/10.1016/j.fuel.2021.120218

    Article  Google Scholar 

  76. Behera SK, Meena H, Chakraborty S, Meikap BC (2018) Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int J Min Sci Technol 28(4):621–629. https://doi.org/10.1016/j.ijmst.2018.04.014

    Article  Google Scholar 

  77. Hatami M (2017) Nanoparticles migration around the heated cylinder during the RSM optimization of a wavy-wall enclosure. Adv Powder Technol 28(3):890–899. https://doi.org/10.1016/j.apt.2016.12.015

    Article  Google Scholar 

  78. Raj RA, Murugesan S (2022) Optimization of dielectric properties of pongamia pinnata methyl ester for power transformers using response surface methodology. IEEE Trans Dielectr Electr Insul 29(5):1931–1939. https://doi.org/10.1109/TDEI.2022.3190257

    Article  Google Scholar 

  79. Kinnear KE (1994) A perspective on the work in this book. In: Kinnear KE (ed) Advances in genetic programming. MIT Press, pp 3–17

    Google Scholar 

  80. Carr J (2014) An introduction to genetic algorithms. Senior Project 1(40):7

    Google Scholar 

  81. Forrest S (1996) Genetic algorithms. ACM Comput Surv. https://doi.org/10.1145/234313.234350

    Article  Google Scholar 

  82. McCall J (2005) Genetic algorithms for modelling and optimisation. J Comput Appl Math 184(1):205–222. https://doi.org/10.1016/j.cam.2004.07.034

    Article  MathSciNet  MATH  Google Scholar 

  83. Lambert-torres G, Martins HG, Coutinho MP, Silva LEB, Matsunaga FM, Carminati RA (2009) Genetic algorithm to system restoration. World Congress Electron Electric Eng. https://doi.org/10.13140/RG.2.1.4926.2482

    Article  Google Scholar 

  84. Lima AR, de Mattos Neto PSG, Silva DA, Ferreira TAE (2016) Tests with different fitness functions for tuning of artificial neural networks with genetic algorithms. X Congresso Brasileiro de Inteligˆencia Computacional. 1(1):1–8. https://doi.org/10.21528/cbic2011-32.5

    Article  Google Scholar 

  85. Kour H, Sharma P, Abrol P (2015) Analysis of fitness function in genetic algorithms. J Sci Tech Adv 1(3):87–89

    Google Scholar 

  86. Mandal S, Anderson TA, Turek JS, Gottschlich J, Zhou S, Muzahid A (2021) Learning fitness functions for machine programming. Proc Mach Learn Syst 1:139–155

    Google Scholar 

  87. Petridis V, Kazarlis S, Bakirtzis A (1998) Varying fitness functions in genetic algorithm constrained optimization: The cutting stock and unit commitment problems. IEEE Trans Syst Man Cybern Part B Cybern 28(5):629–640. https://doi.org/10.1109/3477.718514

    Article  Google Scholar 

  88. Avdeenko TV, Serdyukov KE, Tsydenov ZB (2021) Formulation and research of new fitness function in the genetic algorithm for maximum code coverage. Procedia Comput Sci 186:713–720. https://doi.org/10.1016/j.procs.2021.04.194

    Article  Google Scholar 

  89. Der Yang M, Yang YF, Su TC, Huang KS (2014) An efficient fitness function in genetic algorithm classifier for landuse recognition on satellite images. Sci World J. https://doi.org/10.1155/2014/264512

    Article  Google Scholar 

  90. Chakraborty B (2002) Genetic algorithm with fuzzy fitness function for feature selection. IEEE Int Symp Ind Electron 1:315–319. https://doi.org/10.1109/isie.2002.1026085

    Article  Google Scholar 

  91. Büche D, Schraudolph NN, Koumoutsakos P (2005) Accelerating evolutionary algorithms with Gaussian process fitness function models. IEEE Trans Syst Man Cybern Part C Appl Rev 35(2):183–194. https://doi.org/10.1109/TSMCC.2004.841917

    Article  Google Scholar 

  92. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-10139-6

    Article  Google Scholar 

  93. Haq EU, Ahmad I, Hussain A, Almanjahie IM (2019) A novel selection approach for genetic algorithms for global optimization of multimodal continuous functions. Comput Intell Neurosci. https://doi.org/10.1155/2019/8640218

    Article  Google Scholar 

  94. Shukla A, Pandey HM, Mehrotra D (2015) Comparative review of selection techniques in genetic algorithm. Int Conf Futur Trends Comput Anal Knowl Manag. https://doi.org/10.1109/ABLAZE.2015.7154916

    Article  Google Scholar 

  95. Jebari K, Madiafi M (2013) Selection methods for genetic algorithms. Int J Emerg Sci 3(4):333–344

    Google Scholar 

  96. Minetti G, Salto C, Alfonso H (1999) A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms, I work. Investig en Ciencias la Comput 1:9–12

    Google Scholar 

  97. Pencheva T, Atanassov K, Shannon A (2009) Modelling of a stochastic universal sampling selection operator in genetic algorithms using generalized nets. Tenth Int Work Gen Nets 2009:1–7

    Google Scholar 

  98. Orong MY, Sison AM, Hernandez AA (2018) Mitigating vulnerabilities through forecasting and crime trend analysis. Eng Bus Soc Sci. https://doi.org/10.1109/ICBIR.2018.8391166

    Article  Google Scholar 

  99. Hancock PJB (2019) Selection methods for evolutionary algorithms. Practical handbook of genetic algorithms. CRC Press, Boca Raton, pp 67–92

    Chapter  Google Scholar 

  100. Champlin R, Champlin R (2018) Selection methods of genetic algorithms selection methods of genetic algorithms. Digit Commons Comput Sci 8:1

    Google Scholar 

  101. Kiran CA, Xaxa D (2015) Comparative study on various selection methods in genetic algorithm. Int J Soft Comput Artif Intell 8(3):96–103

    Google Scholar 

  102. Jannoud I, Jaradat Y, Masoud MZ, Manasrah A, Alia M (2022) The role of genetic algorithm selection operators in extending wsn stability period: a comparative study. Electron 11(1):1–16. https://doi.org/10.3390/electronics11010028

    Article  Google Scholar 

  103. Umbarkar AJ, Sheth PD (2015) Crossover operators in genetic algorithms: a review. ICTACT J Soft Comput 06(01):1083–1092. https://doi.org/10.21917/ijsc.2015.0150

    Article  Google Scholar 

  104. Y. Kaya, M. Uyar, and R. Tek, “A novel crossover operator for genetic algorithms: ring crossover,” arXiv Prepr., pp. 1–4, 2011.

  105. Anand E, Panneerselvam R (2016) A study of crossover operators for genetic algorithm and proposal of a new crossover operator to solve open shop scheduling problem. Am J Ind Bus Manag 06(06):774–789. https://doi.org/10.4236/ajibm.2016.66071

    Article  Google Scholar 

  106. Kora P, Yadlapalli P (2017) Crossover operators in genetic algorithms: a review. Int J Comput Appl 162(10):34–36. https://doi.org/10.5120/ijca2017913370

    Article  Google Scholar 

  107. Magalhães-Mendes J (2013) A comparative study of crossover operators for genetic algorithms to solve the job shop scheduling problem. WSEAS Trans Comput 12(4):164–173

    Google Scholar 

  108. Kumar VS, Panneerselvam R (2017) A study of crossover operators for genetic algorithms to solve VRP and its variants and new sinusoidal motion crossover operator. Int J Comput Intell Res 13(7):1717–1733

    Google Scholar 

  109. Hassanat A, Almohammadi K, Alkafaween E, Abunawas E, Hammouri A, Prasath VBS (2019) Choosing mutation and crossover ratios for genetic algorithms-a review with a new dynamic approach. Information. https://doi.org/10.3390/info10120390

    Article  Google Scholar 

  110. O. Abdoun, J. Abouchabaka, and C. Tajani, “Analyzing the performance of mutation operators to solve the travelling salesman problem,” arXiv Prepr, 2012.

  111. Lim SM, Sultan ABM, Sulaiman MN, Mustapha A, Leong KY (2017) Crossover and mutation operators of genetic algorithms. Int J Mach Learn Comput 7(1):9–12. https://doi.org/10.18178/ijmlc.2017.7.1.611

    Article  Google Scholar 

  112. Nazeri Z, Khanli LM (2014) An insertion mutation operator for solving project scheduling problem. Iran Conf Intell Syst ICIS 2014:1–4. https://doi.org/10.1109/IranianCIS.2014.6802537

    Article  Google Scholar 

  113. Soni N, Kumar T (2014) Study of various mutation operators in genetic algorithms. Int J Comput Sci Inf Technol 5(3):4519–4521

    MathSciNet  Google Scholar 

  114. Liu C, Kroll A (2016) Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems. Springerplus. https://doi.org/10.1186/s40064-016-3027-2

    Article  Google Scholar 

  115. Deep K, Mebrahtu H (2011) Combined mutation operators of genetic algorithm for the travelling salesman problem Kusum. Int J Comb Optim Probl Inform 2(3):1–23

    Google Scholar 

  116. Sutton AM, Whitley LD (2014) Fitness probability distribution of bit-flip mutation. Evol Comput 23(2):217–248. https://doi.org/10.1162/EVCO

    Article  Google Scholar 

  117. De Falco I, Della Cioppa A, Tarantino E (2002) Mutation-based genetic algorithm: performance evaluation. Appl Soft Comput 1(4):285–299. https://doi.org/10.1016/S1568-4946(02)00021-2

    Article  Google Scholar 

  118. S. Sarmady, “An Investigation on Genetic Algorithm Parameters,” 2007.

  119. Kumar R, Memoria M, Chandel A (2020) Performance analysis of proposed mutation operator of genetic algorithm under scheduling problem. Proc Int Conf Intell Eng Manag ICIEM 2020:193–197. https://doi.org/10.1109/ICIEM48762.2020.9160215

    Article  Google Scholar 

  120. W et al (2020) Metadata of the chapter that will be visualized in OnlineFirst. Itib. https://doi.org/10.1007/978-3-642-03503-6

    Article  Google Scholar 

  121. Contras D, Matei O (2016) Translation of the mutation operator from genetic algorithms to evolutionary ontologies. Int J Adv Comput Sci Appl 7(1):3–8. https://doi.org/10.14569/ijacsa.2016.070186

    Article  Google Scholar 

  122. Bajpai P, Kumar M (2010) Genetic algorithm–an approach to solve global optimization problems. Indian J Comput Sci Eng 1(3):199–206

    Google Scholar 

  123. Elsayed SM, Sarker RA, Essam DL (2014) A new genetic algorithm for solving optimization problems. Eng Appl Artif Intell 27:57–69. https://doi.org/10.1016/j.engappai.2013.09.013

    Article  Google Scholar 

  124. Jin Y-F, Yin Z-Y, Shen S-L, Hicher P-Y (2016) Selection of sand models and identification of parameters using an enhanced genetic algorithm. Int J Numer Anal Methods Geomech 40(8):1219–1240. https://doi.org/10.1002/nag.2487

    Article  Google Scholar 

  125. Marcovecchio MG, Aguirre PA, Scenna NJ (2005) Global optimal design of reverse osmosis networks for seawater desalination: modeling and algorithm. Desalination 184(1–3):259–271. https://doi.org/10.1016/j.desal.2005.03.056

    Article  Google Scholar 

  126. Al-Obaidi MA, Li JP, Kara-Zaïtri C, Mujtaba IM (2017) Optimisation of reverse osmosis based wastewater treatment system for the removal of chlorophenol using genetic algorithms. Chem Eng J 316:91–100. https://doi.org/10.1016/j.cej.2016.12.096

    Article  Google Scholar 

  127. Ho SH, Chen CY, Lee DJ, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol Adv 29(2):189–198. https://doi.org/10.1016/j.biotechadv.2010.11.001

    Article  Google Scholar 

  128. Azari A, Tavakoli H, Barkdoll BD, Haddad OB (2020) Predictive model of algal biofuel production based on experimental data. Algal Res 47:101843. https://doi.org/10.1016/j.algal.2020.101843

    Article  Google Scholar 

  129. Al-Turjman F, Abujubbeh M (2019) IoT-enabled smart grid via SM: an overview. Futur Gener Comput Syst 96:579–590. https://doi.org/10.1016/j.future.2019.02.012

    Article  Google Scholar 

  130. Arabali A, Ghofrani M, Etezadi-Amoli M, Fadali MS, Baghzouz Y (2013) Genetic-algorithm-based optimization approach for energy management. IEEE Trans Power Deliv 28(1):162–170. https://doi.org/10.1109/TPWRD.2012.2219598

    Article  Google Scholar 

  131. Rosa JPS, Guerra DJD, Horta NCG, Martins RMF, Lourenço NCC (2020) Overview of artificial neural networks. Appl Sci Technol 1:21–44. https://doi.org/10.1007/978-3-030-35743-6_3

    Article  Google Scholar 

  132. Babu MS, Imai T, Sarathi R (2021) Classification of aged epoxy micro-nanocomposites through PCA- and ANN-Adopted LIBS analysis. IEEE Trans Plasma Sci 49(3):1088–1096. https://doi.org/10.1109/TPS.2021.3061410

    Article  Google Scholar 

  133. Raghavendra U, Fujita H, Bhandary SV, Gudigar A, Tan JH, Acharya UR (2018) Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf Sci 441:41–49. https://doi.org/10.1016/j.ins.2018.01.051

    Article  MathSciNet  Google Scholar 

  134. Ghimire S, Deo RC, Downs NJ, Raj N (2019) Global solar radiation prediction by ANN integrated with European centre for medium range weather forecast fields in solar rich cities of Queensland Australia. J Clean Prod 216:288–310. https://doi.org/10.1016/j.jclepro.2019.01.158

    Article  Google Scholar 

  135. Ertuğrul ÖF (2018) A novel type of activation function in artificial neural networks: trained activation function. Neural Netw 99:148–157. https://doi.org/10.1016/j.neunet.2018.01.007

    Article  Google Scholar 

  136. Montesinos López OA, Montesinos López A, Crossa J (2022) Multivariate statistical machine learning methods for genomic prediction. Springer, Cham

    Book  Google Scholar 

  137. Jain AK, Mao J, Mohiuddin KM (1996) Artificial neural networks: a tutorial. Computer (Long Beach Calif) 29(3):31–44. https://doi.org/10.1109/2.485891

    Article  Google Scholar 

  138. Feng J, Lu S (2019) Performance analysis of various activation functions in artificial neural networks. J Phys Conf Ser 1237(2):111–122. https://doi.org/10.1088/1742-6596/1237/2/022030

    Article  Google Scholar 

  139. Sharma S, Sharma S, Athaiya A (2020) Activation functions in neural networks. Int J Eng Appl Sci Technol 04(12):310–316. https://doi.org/10.33564/ijeast.2020.v04i12.054

    Article  Google Scholar 

  140. Szandała T (2021) Review and comparison of commonly used activation functions for deep neural networks. Bio-inspired neurocomputing. Springer, Singapore, pp 203–224

    Chapter  Google Scholar 

  141. Bai Y, Zhang H, Hao Y (2009) The performance of the backpropagation algorithm with varying slope of the activation function. Chaos Solitons Fractals 40(1):69–77. https://doi.org/10.1016/j.chaos.2007.07.033

    Article  MATH  Google Scholar 

  142. Kayri M (2016) Predictive abilities of Bayesian regularization and Levenberg–Marquardt algorithms in artificial neural networks: a comparative empirical study on social data. Math Comput Appl. https://doi.org/10.3390/mca21020020

    Article  MathSciNet  Google Scholar 

  143. Roy RB et al (2021) A comparative performance analysis of ANN algorithms for MPPT energy harvesting in solar PV system. IEEE Access 9:102137–102152. https://doi.org/10.1109/ACCESS.2021.3096864

    Article  Google Scholar 

  144. Namasudra S, Dhamodharavadhani S, Rathipriya R (2023) Nonlinear neural network based forecasting model for predicting COVID-19 cases. Neural Process Lett 55(1):171–191. https://doi.org/10.1007/s11063-021-10495-w

    Article  Google Scholar 

  145. Smith JS, Member S, Wu B, Member S, Wilamowski BM, Fellow L (2019) Neural network training with Levenberg–Marquardt and adaptable weight compression. IEEE Trans Neural Netw Learning Syst 30(2):580–587

    Article  Google Scholar 

  146. Guanabara E, Ltda K, Guanabara E, Ltda K (2022) Artificial intelligence and machine learning for EDGE computing. Elsevier. https://doi.org/10.1016/C2020-0-01569-0

    Article  Google Scholar 

  147. A. Ranganathan, “The Levenberg-Marquardt Algorithm 3 LM as a blend of Gradient descent and Gauss-Newton itera,” Internet httpexcelsior cs ucsb educoursescs290ipdfL MA pdf, 142.June, pp. 1–5, 2004, [Online]. Available: http://twiki.cis.rit.edu/twiki/pub/Main/AdvancedDipTeamB/the-levenberg-marquardt-algorithm.pdf

  148. Burden F, Winkler D (2008) Bayesian regularization of neural networks. Angew Chem Int Ed 6(11):951–952. https://doi.org/10.1007/978-1-60327-101-1_3

    Article  Google Scholar 

  149. Imam A, Salami BA, Oyehan TA (2021) Predicting the compressive strength of a quaternary blend concrete using Bayesian regularized neural network. J Struct Integr Maint 6(4):237–246. https://doi.org/10.1080/24705314.2021.1892572

    Article  Google Scholar 

  150. Yang B et al (2021) Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms. Energy 228:120592. https://doi.org/10.1016/j.energy.2021.120592

    Article  Google Scholar 

  151. Liu CS, Atluri SN (2011) An iterative method using an optimal descent vector, for solving an Ill-conditioned system Bx = b, better and faster than the conjugate gradient method. C Comput Model Eng Sci 80(3–4):275–298

    Google Scholar 

  152. Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525–533. https://doi.org/10.1016/S0893-6080(05)80056-5

    Article  Google Scholar 

  153. Khan TA, Alam M, Shahid Z (2019) Comparative performance analysis of Levenberg–Marquardt, Bayesian regularization and scaled conjugate gradient for the prediction of flash floods. J Inform Commun Technol Robot Appl 1:52–58

    Google Scholar 

  154. Selvamuthu D, Kumar V, Mishra A (2019) Indian stock market prediction using artificial neural networks on tick data. Financ Innov. https://doi.org/10.1186/s40854-019-0131-7

    Article  Google Scholar 

  155. Amalanathan AJ, Vasa NJ, Harid N, Griffiths H, Sarathi R (2021) Classification of thermal ageing impact of ester fluid-impregnated pressboard material adopting LIBS. High Volt 6(4):655–664. https://doi.org/10.1049/hve2.12092

    Article  Google Scholar 

  156. Amizhtan SK et al (2022) Experimental study and ann analysis of rheological behavior of mineral oil-based SiO2 nanofluids. IEEE Trans Dielectr Electr Insul 29(3):956–964. https://doi.org/10.1109/TDEI.2022.3173514

    Article  Google Scholar 

  157. Vu HL, Bolingbroke D, Ng KTW, Fallah B (2019) Assessment of waste characteristics and their impact on GIS vehicle collection route optimization using ANN waste forecasts. Waste Manag 88(2019):118–130. https://doi.org/10.1016/j.wasman.2019.03.037

    Article  Google Scholar 

  158. Banerjee P, Sau S, Das P, Mukhopadhayay A (2015) Optimization and modelling of synthetic azo dye wastewater treatment using graphene oxide nanoplatelets: characterization toxicity evaluation and optimization using artificial neural network. Ecotoxicol Environ Saf 119:47–57. https://doi.org/10.1016/j.ecoenv.2015.04.022

    Article  Google Scholar 

  159. Ghosal S, Chaki S (2010) Estimation and optimization of depth of penetration in hybrid CO2 LASER-MIG welding using ANN-optimization hybrid model. Int J Adv Manuf Technol 47(9–12):1149–1157. https://doi.org/10.1007/s00170-009-2234-1

    Article  Google Scholar 

  160. Ranade R, Alqahtani S, Farooq A, Echekki T (2019) An ANN based hybrid chemistry framework for complex fuels. Fuel 241:625–636. https://doi.org/10.1016/j.fuel.2018.12.082

    Article  Google Scholar 

  161. Tian W, Liao Z, Zhang J (2017) An optimization of artificial neural network model for predicting chlorophyll dynamics. Ecol Modell 364:42–52. https://doi.org/10.1016/j.ecolmodel.2017.09.013

    Article  Google Scholar 

  162. Garg A, Jain S (2020) Process parameter optimization of biodiesel production from algal oil by response surface methodology and artificial neural networks. Fuel 277:118254. https://doi.org/10.1016/j.fuel.2020.118254

    Article  Google Scholar 

  163. Ortiz F, Simpson JR, Pignatiello JJ, Heredia-Langner A (2004) A genetic algorithm approach to multiple-response optimization. J Qual Technol 36(4):432–450. https://doi.org/10.1080/00224065.2004.11980289

    Article  Google Scholar 

  164. Álvarez MJ, Ilzarbe L, Viles E, Tanco M (2009) The use of genetic algorithms in response surface methodology. Qual Technol Quant Manag 6(3):295–307. https://doi.org/10.1080/16843703.2009.11673201

    Article  MathSciNet  MATH  Google Scholar 

  165. Khoo LP, Chen CH (2001) Integration of response surface methodology with genetic algorithms. Int J Adv Manuf Technol 18(7):483–489. https://doi.org/10.1007/s0017010180483

    Article  Google Scholar 

  166. Mustefa Beyan S, Venkatesa Prabhu S, Mumecha TK, Gemeda MT (2021) Production of alkaline proteases using Aspergillus sp. isolated from Injera: RSM-GA based process optimization and enzyme kinetics aspect. Curr Microbiol 78(5):1823–1834. https://doi.org/10.1007/s00284-021-02446-4

    Article  Google Scholar 

  167. Sabry I, El-Zathry NE, Gadallah N, Abdel Ghafaar M (2022) Implementation of hybrid RSM-GA optimization techniques in underwater friction stir welding. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/2299/1/012014

    Article  Google Scholar 

  168. Hasanien HM, Muyeen SM (2013) A Taguchi approach for optimum design of proportional-integral controllers in cascaded control scheme. IEEE Trans Power Syst 28(2):1636–1644. https://doi.org/10.1109/TPWRS.2012.2224385

    Article  Google Scholar 

  169. Ajala SO, Alexander ML (2020) Multi-objective optimization studies of microalgae dewatering by utilizing bio-based alkali: a case study of response surface methodology (RSM) and genetic algorithm (GA). SN Appl Sci 2(3):1–20. https://doi.org/10.1007/s42452-020-2097-5

    Article  Google Scholar 

  170. Obi CC, Nwabanne JT, Igwegbe CA, Ohale PE, Okpala COR (2022) Multi-characteristic optimization and modeling analysis of electrocoagulation treatment of abattoir wastewater using iron electrode pairs. J Water Process Eng 49:103136. https://doi.org/10.1016/j.jwpe.2022.103136

    Article  Google Scholar 

  171. Rhee JH, Il Kim S, Lee KM, Kim MK, Lim YM (2021) Optimization of position and number of hotspot detectors using artificial neural network and genetic algorithm to estimate material levels inside a silo. Sensors. https://doi.org/10.3390/s21134427

    Article  Google Scholar 

  172. Chen Z, Lin X, Xiong C, Chen N (2020) Modeling the relationship of precipitation and water level using grid precipitation products with a neural network model. Remote Sens. https://doi.org/10.3390/rs12071096

    Article  Google Scholar 

  173. Chiroma H et al (2017) Neural networks optimization through genetic algorithm searches: a review. Appl Math Inf Sci 11(6):1543–1564. https://doi.org/10.18576/amis/110602

    Article  MathSciNet  Google Scholar 

  174. Ferentinos KP (2005) Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms. Neural Netw 18(7):934–950. https://doi.org/10.1016/j.neunet.2005.03.010

    Article  MathSciNet  Google Scholar 

  175. Ahmadi MA, Shadizadeh SR (2013) Retracted article: intelligent approach for prediction of minimum miscible pressure by evolving genetic algorithm and neural network. Neural Comput Appl 23(2):569. https://doi.org/10.1007/s00521-012-0984-4

    Article  Google Scholar 

  176. Oreski S, Oreski D, Oreski G (2012) Hybrid system with genetic algorithm and artificial neural networks and its application to retail credit risk assessment. Expert Syst Appl 39(16):12605–12617. https://doi.org/10.1016/j.eswa.2012.05.023

    Article  Google Scholar 

  177. Dong P, Liao X, Chen Z, Chu H (2019) An improved method for predicting CO2 minimum miscibility pressure based on artificial neural network. Adv Geo-Energy Res 3(4):355–364. https://doi.org/10.26804/ager.2019.04.02

    Article  Google Scholar 

  178. Ghodousian A, Babalhavaeji A (2018) An efficient genetic algorithm for solving nonlinear optimization problems defined with fuzzy relational equations and max-Lukasiewicz composition. Appl Soft Comput J 69:475–492. https://doi.org/10.1016/j.asoc.2018.04.029

    Article  Google Scholar 

  179. Bahrami S, Doulati Ardejani F, Baafi E (2016) Application of artificial neural network coupled with genetic algorithm and simulated annealing to solve groundwater inflow problem to an advancing open pit mine. J Hydrol 536:471–484. https://doi.org/10.1016/j.jhydrol.2016.03.002

    Article  Google Scholar 

  180. Taghavi M, Gharehghani A, Nejad FB, Mirsalim M (2019) Developing a model to predict the start of combustion in HCCI engine using ANN-GA approach. Energy Convers Manag 195:57–69. https://doi.org/10.1016/j.enconman.2019.05.015

    Article  Google Scholar 

  181. Suresh MVJJ, Reddy KS, Kolar AK (2011) ANN-GA based optimization of a high ash coal-fired supercritical power plant. Appl Energy 88(12):4867–4873. https://doi.org/10.1016/j.apenergy.2011.06.029

    Article  Google Scholar 

  182. Dwiputranto TH, Setiawan NA, Adji TB (2021) “DGA-based early transformer fault detection using rough set theory classifier. Int Conf Adv Mechatron Intell Manuf Ind Autom. https://doi.org/10.1109/ICAMIMIA54022.2021.9807816

    Article  Google Scholar 

  183. Bülbül MA, Harirchian E, Işık MF, Aghakouchaki Hosseini SE, Işık E (2022) A hybrid ANN-GA model for an automated rapid vulnerability assessment of existing RC buildings. Appl Sci. https://doi.org/10.3390/app12105138

    Article  Google Scholar 

  184. Smaali A et al (2022) Degradation of azithromycin from aqueous solution using chlorine-ferrous-oxidation: ANN-GA modeling and Daphnia magna biotoxicity test assessment. Environ Res 214(P3):114026. https://doi.org/10.1016/j.envres.2022.114026

    Article  Google Scholar 

  185. Karimi H, Yousefi F (2012) Application of artificial neural network-genetic algorithm (ANN-GA) to correlation of density in nanofluids. Fluid Phase Equilib 336:79–83. https://doi.org/10.1016/j.fluid.2012.08.019

    Article  Google Scholar 

Download references

Funding

The authors did not receive any specific grant from funding agencies in public or non-profit sector.

Author information

Authors and Affiliations

Authors

Contributions

AS-Conceptualization, methodology, writing original draft; PM-Review and Supervision; AAJ-Conceptualization, methodology, writing original draft. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Amalanathan Arputhasamy Joseph.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

The authors of the manuscript have fulfilled with all the ethical standards necessary for the publication of the journal.

Replication of Results

No results are presented.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susaimanickam, A., Manickam, P. & Joseph, A.A. A Comprehensive Review on RSM-Coupled Optimization Techniques and Its Applications. Arch Computat Methods Eng 30, 4831–4853 (2023). https://doi.org/10.1007/s11831-023-09963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09963-4

Navigation